P	hys 2426: University Physics II Name:
Fall 2016Exam 1 – Practice	
1.	(0 Points) What course is this? a PHYS 1401 b PHYS 1402 c PHYS 2425 d PHYS 2426
2.	(o Points) What exam is this?
	a. Exam 1 b. Exam 2 c. Final Exam
3.	(o Points) What version of the exam is this?
Ū	a. Version A b. Version B c. Version C d. Version D
4.	In the figure to the right, the red arrows indicate the direction of the 👘 👟 🥆 👌 🏄 🥓 💊 🐧
	electric field. Determine the signs of each of the three charges.
	a. All three charges are positive.
	b. All three charges are negative.
	c. A is negative, while B and C are positive.
	d. A is positive, while B and C are negative.
	e. A and B are positive, while C is negative. 🕴 🍾 🔌 🥦 🖝 🕒
(Q	uestions 5–7) A charge of 4.0 nC is at the origin. There are no other 👘 💊 💊 🖛 🥓 🕇 🔖 🔖 🔖
cha	arges in the universe.
Co	onsider a point P located 1.5 m away, along the $+x$ axis.
5.	What is the direction of the electric field at point <i>P</i> ?
	a. + <i>x</i>
	b <i>x</i>
	c. + <i>y</i>
	d y
	e. It is zero.
6.	What is the magnitude of the electric field at point <i>P</i> ?
	a. 2.6 N/C
	b. 6 N/C
	c. 16 N/C
	d. 24 N/C

e. 64 N/C

7. If a (-5.0 nC) charge is now placed at point *P*, what is the direction of the force on this new charge?

- a. +*x*
- b. -*x*
- c. +*y*
- d. *y*
- e. It is zero.
- 8. A balloon is rubbed against a cotton or wool shirt, and the balloon becomes negatively charged. What is the most likely physical change that occurred to caused this charge?
 - a. Some of the balloon's electrons were destroyed.
 - b. The rubbing process created some extra electrons.
 - c. The balloon lost some electrons to the shirt.
 - d. The balloon picked up some extra electrons from the shirt.
 - e. The balloon lost some protons to the shirt.

Name:

Phys 2426: University Physics II Fall 2016

- 9. In the figure to the right, two points, A and B, are located within a region in which an electric field points toward the right. How would you describe the relationship between their electric potentials V_A and V_B ?
 - a. V_A is a higher potential.
 - b. V_B is a higher potential.
 - c. The points are at the same potential.
 - d. It depends on what kind of charge is placed in the region.
 - e. Impossible to determine from the information given.
- 10. How many protons does it take to form a coulomb of charge?
 - a. 6.25×10¹⁸ protons
 - b. 1.6×10⁻¹⁹ protons
 - c. 9.1×10⁻³¹ protons
 - d. 1.6×10^{18} protons
 - e. 1.1×10³⁰ protons
- 11. A 0.5 F capacitor is charged up to a potential difference of 10 V. What is the charge of just the positive plate of the capacitor?
 - a. 0.05 C
 - b. 5.0 C
 - c. 10.0 C
 - d. 20.0 C
 - e. 0.0 C
- 12. A 0.5 F capacitor is charged up to a potential difference of 10 V. What is the total charge of the capacitor, including both plates?
 - a. 0.05 C
 - b. 5.0 C
 - c. 10.0 C
 - d. 20.0 C
 - e. 0.0 C
- 13. In a DC circuit, when a capacitor is fully charged, the current entering and leaving the capitor is...
 - a. zero.
 - b. at its maximum value.
 - c. less than the current in a resistor in series with the capacitor.
 - d. greater than the current in a resistor in series with the capacitor.
 - e. equal to half of its maximum value.
- 14. In a working electrical circuit, the electric current has this behavior:
 - a. It is emitted by the battery and absorbed by the load.
 - b. It is emitted by the load and absorbed by the battery.
 - c. It flows in the air around the wires, in a direction determined by the right-hand rule.
 - d. It circulates around the circuit like blood flowing around our cardiovascular system. (Note: The "load" is the device using the electricity, such as a light bulb, motor, or resistor.)
- 15. If an electron beam is pointed northward, what is the direction of the electric current formed by the beam?
 - a. North
 - b. South
 - c. Upward
 - d. Downward
 - e. Clockwise, as viewed from the top.

16. If a circuit consists of an ideal battery, an appropriate light bulb, and an ideal voltmeter, all in series,

Ē B •

Exam 1 – Practice

Name:

Phys 2426: University Physics II Fall 2016

Exam 1 – Practice

- a. The bulb will be lit, but the voltmeter will display zero.
- b. The bulb will be lit, and the voltmeter will display half of the battery's EMF.
- c. The bulb will be lit, and the voltmeter will display the battery's EMF.
- d. The bulb will be off, and the voltmeter will display zero.
- e. The bulb will be off, and the voltmeter will display the battery's EMF.
- 17. A 7.0 Ω resistor is connected to a 5.0 V adjustable power supply. If the voltage is doubled, what happens to the resistance?
 - a. The resistance increases $4 \times$.
 - b. The resistance doubles.
 - c. The resistance stays the same.
 - d. The resistance is cut in half.
 - e. The resistance decreases $4 \times$.

(Questions 18 and 19) A 13.6-g piece of Styrofoam carries a net charge of -0.69μ C and is suspended in equilibrium above the center of a large, horizontal sheet of plastic that has a uniform charge density on its surface.

18. What is the charge per unit area on the plastic sheet?

- a. 1.7 mC/m²
- b. 3.4 *m*C/m²
- c. $1.7 \,\mu C/m^2$
- d. $3.4 \,\mu\text{C/m^2}$
- e. o
- 19. What is the sign of the charge on the plastic sheet?
 - a. Positive.
 - b. Negative.
 - c. Either positive or negative will work.
 - d. The sign of the charge varies.
 - e. Impossible to determine.
- 20. A light bulb that uses LED technology currently costs \$8. Using it reduces electric power usage by about 50 W. If electricity costs \$0.12/kWh, how long would it take (in continuous operation) to recoup the costs of buying the bulb? (Reminders: 1 kWh = 1 kW × 1 hour, 1 day = 24 hours)
 - a. 1 week (approx 7 days)
 - b. 1 month (approx 30 days)
 - c. 2 months (approx 60 days)
 - d. 1 year (approx 365 days)
 - e. 2 years (approx 730 days)
- 21. A cheap USB charging cable only has 28 AWG wires. (28 AWG wire has a cross-sectional area of 0.0810 mm² and copper has a resistivity of $1.7 \times 10^{-8} \Omega$ m.) If you are charging a tablet with 2.0 A of current, how much voltage is lost in a 2.0 m length of this cheap wire?
 - a. 0.0008 V
 - b. 0.1 V
 - c. 0.4 V
 - d. 0.8 V
 - e. 2 V

Phys 2426: University Physics II Fall 2016

Name:

Exam 1 – Practice

- 22. In the circuit to the right, which bulb(s) is(are) the brightest?
 - a. A b. B c. C
 - d. B and C
 - e. All three are equally bright.
- (Questions 23 and 24) A 50 $\mu \rm F$ capacitor's initial voltage is 20 V.
- At t = 0, a 4.0 k Ω resistor is connected across it.
- 23. What is the initial charge of the capacitor?
 - a. 240 µC
 - b. 360 μC
 - c. 400 μC
 - d. 600 μC
 - e. 1000 μC
- 24. What is the charge on the capacitor at the instant when I = 2 mA?
 - a. 240 µC
 - b. 360 μC
 - c. 400 μC
 - d. 600 μC
 - e. 1000 μC
- 25. In an RC circuit, how many time constants must elapse if an initially uncharged capacitor to reach 80% of its final voltage?
 - a. 0.22
 - b. 1.6
 - c. 1.9
 - d. 3.0
 - e. 5.0
- 26. A cell phone which is 7 cm × 14 cm is placed on a metal table. There is a metal plate in the entire back of the phone which is now 1 mm away from the table. If this system acts like a parallel-plate capacitor with a dielectric constant of 1, what is the capacitance between the phone and the table? (Note: $1 \text{ pF} = 10^{-12} \text{ F}$)
 - a. 8.7 pF
 - b. 87 pF
 - c. 8.7 nF
 - d. 87 nF
 - e. 8.7 μF

27. How much electric flux is generated by a single proton? (Volt-meter (V·m) is the SI unit of electric flux.)

- a. $1.6 \times 10^{-19} \,\mathrm{V} \cdot \mathrm{m}$
- b. $8.85 \times 10^{-12} \,\mathrm{V} \cdot \mathrm{m}$
- c. $1.8 \times 10^{-8} \,\mathrm{V} \cdot \mathrm{m}$
- d. 1.0 V·m
- e. $5.5 \times 10^7 \,\mathrm{V} \cdot \mathrm{m}$
- 28. A 8.0 nC charge is placed at the center of a thick spherical metal shell. The net charge on the shell is –5.0 nC. If the outside radius of the shell is 6 cm, what is the electric field just outside the shell?
 - a. 7.5 kN/C, pointing outward
 - b. 12.5 kN/C, pointing inward
 - c. 20 kN/C, pointing outward
 - d. 53 N/C, pointing clockwise
 - e. o N/C

Name:

Phys 2426: University Physics II Fall 2016

Exam 1 – Practice

Kirchoff's Laws

Figure: (Questions 29 thru 32) Two batteries are connected into a network as shown, with two currents already labeled.

29. Which of the following is a valid Kirchoff's Voltage Law equation for the circuit (in SI units)?

- a. $22 24 + 7I_3 4I_1 = 0$
- b. $22 24 7I_3 + 4I_1 = 0$
- c. $22 24 2(I_1 + I_3) = 0$
- d. $22 + 24 7I_3 4I_1 = 0$
- e. $22 + 24 + 7I_3 + 4I_1 = 0$

30. If the Kirchoff's Current Law equation is: $I_1 + I_3 = I_2$, where should I_2 be labeled?

- a. Pointing toward the left in the 4 Ω resistor.
- b. Pointing toward the right in the 4 Ω resistor.
- c. Pointing upward through the 2 Ω resistor.
- d. Pointing downward through the 2 Ω resistor.
- e. Pointing toward the left in the 2 Ω resistor.

31. What is the magnitude of the current in the 2 Ω resistor? (Choose the closest answer.)

- a. 1 A
- b. 2 A
- c. 3 A
- d. 5 A
- e. 10 A

32. What is the direction of the current in the 2 Ω resistar? (The conventional current, not the direction of the electron flow.)

- a. Upward
- b. Downward
- c. Leftward
- d. Rightward
- e. Cannot be determined.

33. In the circuit to the right, the three resistors each has the same value

 $R_1 = R_2 = R_3 = 20.0 \Omega$. If an ammeter is placed in parallel with R_3 , what will the reading on the ammeter be?

- a. 2.0 A
- b. 3.0 A
- c. 4.0 A
- d. 6.0 A
- e. 12.0 A

