Electric field causes Force

\[\vec{F}_E = q_0 \vec{E} \]

\(\Theta \) is pushed with \(\vec{E} \) ; \(\Theta \) pulled against \(\vec{E} \)

Source charges (not \(q_0 \)) cause \(\vec{E} \).

- Point Charge \(\vec{E} = \frac{kQ}{r^2} \) (away from \(\Theta \))

- Charge Distribution \(\vec{E} = \int \frac{k \, dQ}{r^2} \)

- Gauss's Law
 - Electric Flux is like "total \(\vec{E} \) piercing a surface."

\[\Phi_E = \oint \vec{E} \cdot d\vec{A} = E_{\text{avg}} \cdot A \]

- Each charge generates flux proportional to \(Q \).

\[\Phi_E = \frac{Q}{\varepsilon_0} = \frac{Q}{4\pi k Q} \]
To apply Gauss's Law, we must create an imaginary surface to "catch" the flux generated by our charges. \[
\left(\frac{N m^2}{C^2} \right) \cdot (C) = \left(\frac{N}{C} \right) m
\]

Ex.: Point Charge

Flux generated:

\[
\Phi = 4\pi k Q
\]

\[
q = 1.6 \times 10^{-19} C
\]

\[
\Phi = 4\pi (9 \times 10^9)(1.6 \times 10^{-19})
\]

\[
= 6.8 \times 10^{-8} \left(\frac{N \cdot m^2}{C} \right)
\]

"Catch" with sphere of radius \(r \).

\[
\Phi = E \cdot A
\]

\[
E = \frac{\Phi}{A} = \frac{4\pi k Q}{4\pi r^2} = \frac{kQ}{r^2}
\]

- Any charges inside our "net" contribute to the flux caught.
- Any charges outside it don't contribute.
- Flux is E-Field Lines.

\[\text{This line goes in & out of the net,}
\]
\[\text{This charge doesn't contribute to caught } \Phi.\]
Solid Ball of Charge

\[Q = +5 \ \text{nC} \]
\[R = 0.25 \ \text{m} \]

For points outside, \(r > 0.25 \ \text{m} \)

Our "net" surrounds the whole ball.

\[\Phi = 4\pi k Q_{\text{enc}} \]
\[E = \frac{\Phi}{A} = \frac{4\pi k Q_{\text{enc}}}{4\pi r^2} = \frac{kQ}{r^2} = \frac{k(5\ \text{nC})}{r^2} \]

For points inside, \(r < 0.25 \ \text{m} \)

\[Q_{\text{enc}} \] isn't the entire ball.

\[\rho = \frac{Q}{\frac{4}{3}\pi R^3} = \frac{Q_{\text{enc}}}{\frac{4}{3}\pi r^3} \Rightarrow \frac{Q_{\text{enc}}}{R^3} = \frac{r^3 Q}{R^3} \]

\[E = \frac{kQ_{\text{enc}}}{r^2} = \frac{k}{r^2} \frac{r^3 Q}{R^3} = \frac{kQ}{R^3} \]
Long Line Charge

\[\lambda = \frac{Q}{L} = \frac{Q_{enc}}{L} \]

This is cylindrical symmetry.

Total Flux caught
- Generated by \(Q_{enc} \)

\[\Phi_E = 4\pi k Q_{enc} = 4\pi k \lambda L \]

* Caught by "net":

Round Part: \[\Phi_E = E_A = E \frac{2\pi r}{L} \]

Flat Caps: \[\Phi_E = E_A = 0 \]

\[E_{2\pi r L} = \frac{2kL}{r^2} \]

\[E = \frac{2kL}{r^2} \]

Electric Field of infinite line charge.
Conductor in an E-Field

Solid Conductor: Θ fixed
most Θ fixed
valence Θ mobile (≈ 1 or 2
per atom)

How much Θ or Θ on the metal surface?

Flux generated

$E = 0$

$\Phi = 4\pi k Q_{ens} < 4\pi k \sigma A$

$E = 4\pi k \sigma$

$\Phi = \frac{Q}{A}$

Flux Caught

$= \sigma / \varepsilon_0$

Left: $\Phi = EA$

E outside metal

Right: $\Phi = 0$

E surface
Conductive Shell

1

+5 nC

-8 nC on shell

\(E = \frac{k(5 \text{ nC})}{r^2} \)

2 Inside

\(E = \frac{k(5 \text{ nC} - 8 \text{ nC})}{r^2} \)

3 Outside

\(\text{In metal: } E = 0 = \frac{k(5 \text{ nC} + 5 \text{ nC})}{r^2} \)

Where is the \(-5 \text{ nC}\)?

On inner surface of shell.

Where is the other \(-3 \text{ nC}\)?

On the outer surface of the shell.