Recall definition of work:

- Exert a force, and move object in that direction, you have given the object energy called work.

\[
W = \int \overrightarrow{F} \cdot d\overrightarrow{x} = \overrightarrow{F}_{avg} \cdot \Delta \overrightarrow{x}
\]

- For a conservative force, we can store energy as potential energy.

\[
W = F_{push} \Delta y \rightarrow W = \Delta U
\]

Our work of lifting adds to potential energy.

\[
W = F_p \Delta y \rightarrow \Delta U = mg \Delta y
\]

So we say the potential energy change is:

If we stop at the indefinite integral,

\[
U_g = \int F_{app} \cdot d\overrightarrow{x} = -\int F_g \cdot d\overrightarrow{x}
\]

\[
U_g = mg \gamma + C
\]
For an Electric Force

\[U_E = -\int F_E \cdot dx \]

\[\vec{F}_E = -\nabla U_E \]

- Force points toward lower potential energy.

With E-Field, we said \(\vec{F}_E = q_0 \vec{E} \)

\[U_E = -\int q_0 \vec{E} \cdot dx = q_0 \left(-\int \vec{E} \cdot dx \right) \]

- Electric Potential Energy
- Electric Potential

Usually used as: \(\Delta U_E = q_0 \Delta V \)

Because of the def: \(E_x = -\frac{dV}{dx} \)

- \(E \) points "downhill" toward lower \(V \).

Protons are \(+ \)
- Pushed with \(E \)
- Repelled from high \(V \)
- Repelled from high \(U_E \)

Elections are \(- \)
- Pulled against \(E \)
- Attracted to high-\(V \)
- Repelled from high \(U_E \)

\[U_E = q_0 V \]
Capacitor as Voltage Storage.

\[E = \frac{1}{4\pi k} \frac{Q}{d} \]

\[\Delta V = - \int E_y \, dy = -E \cdot d \]

Since we know the sign of \(Q \) is at higher \(V \), drop the sign. Since we know only potential differences matter, drop the \(\Delta \).

\[V = Ed = \frac{1}{4\pi k} \frac{Q}{A} \]

\[Q = \left(\frac{1}{4\pi k} \frac{A}{d} \right) V \]

\[Q = CV \]

How much energy does the capacitor store?

\[\text{Energy} = \frac{1}{2} (\text{Charge})^2 \left(\frac{\text{Energy}}{\text{Charge}} \right) = \frac{1}{2} QV \]
Particle Accelerator

\[E \rightarrow \Phi \rightarrow \Delta V \]

Energy given = $q \Delta V$

Where does the energy show up?

\[K = \frac{1}{2}mv^2 \]

Veloctiy
Electric Current - Flow rate of electricity

\[I = \frac{dQ}{dt} \]

Charge that passes by.

\[I = \frac{dQ_1}{dt} \quad I = \frac{dQ_2}{dt} \]

Current

Usually, we don't let Q accumulate. No dead ends.

How do we measure current?

- Make charges go thru our ammeter.
- Allow current thru meter easily.