So Far...

Electric Field (\(\mathbf{E}\))
- \(q \rightarrow \mathbf{E} \rightarrow \mathbf{F}_E\)
- \(\mathbf{E} \leftrightarrow \mathbf{V} \rightarrow \mathbf{I} \rightarrow \mathbf{R}\)

Magnetic Field (\(\mathbf{B}\))
- \(qv \rightarrow \mathbf{B} \rightarrow \mathbf{F}_B\)

Electromagnetism
- \(\frac{d\mathbf{E}}{dt} \rightarrow \mathbf{B}\) loops (Displacement Current)
- \(\frac{d\mathbf{B}}{dt} \rightarrow \mathbf{E}\) loops (Faraday's Law)

Important Results:
- Induced Voltage
- EM Radiation (Radio, Light)
Motional EMF - voltage generated in a conductor moving in a B field.

\[\hat{B} = \text{(in)} \times x \times x \times \]

- Metal made of \oplus and \ominus.
- Mobile because it's a conductor.
- F_B is: Up for \oplus Down for \ominus.
- Charges gather at ends.
- Buildup stops when $F_E = F_B$.
- Induced E in bar: $qE = qvB$.
 \[E = vB \]
- EMF (voltage) between ends:
 \[\Delta V = E = EL = vBL \]
 \[EMF \rightarrow \uparrow \text{Elec Field} \]
Using motional EMF to power a bulb stationary rails

\[\text{Generated EMF: } \varepsilon = vBl \]

\[\text{Induced Current: } I = \frac{\varepsilon}{R_{\text{bulb}}} \]

\[\text{Side-Effect: } \vec{F}_B = I\vec{l} \times \vec{B} \]

\[\vec{F}_B = (\text{Left}) \quad \hat{v} = (\text{Right}) \]

\[F_B = IILB \]

\[\text{Power Input: } P = \vec{F}_{\text{app}} \cdot \hat{v} = IILBv \]

\[P = \varepsilon I = vBLI \]
Ex: $B = 1.0 \ T$

$v = 25 \ m/s$

$l = 0.1 \ m$

$\varepsilon = vBL = 2.5 \ V$

Connect to $R = 5 \ \Omega$

$I = \frac{2.5V}{5\Omega} = 0.5 \ A$

Power supplied to R: $P = \varepsilon I = 1.25 \ W$

Drag Force: $F = IBL$

$= (0.5A)(0.1 \ m)(1.0 T)$

$= 0.05 \ N$

Mechanical Power

$P = F \cdot v$

$= (0.05 \ N)(25 \ m/s)$

$= 1.25 \ W$

Ways to generate EMF:

- Motional EMF
- Varying $|B|$
- Rotating B

Faraday's Law

$\Phi_B = \oint \vec{B} \cdot d\vec{A} = \vec{B} \cdot \hat{n} A$

$\varepsilon = -\frac{d\Phi_B}{dt}$

$= BA \cos \Theta$
\[\Phi_B = BA \cos \Theta \quad \text{Single-loop Flux} \]

\[\hat{n} = \text{into page} \quad \hat{n} = (\text{right}) \]
\[\Theta = 0 \quad \Theta = 90^\circ \]
\[\cos \Theta = 1 \quad \cos \Theta = 0 \]

Practical coil has many loops:
\[\Phi_B = NBA \cos \Theta \quad \text{Total Flux} \]

Spinning loop:
\[\omega = \frac{d\theta}{dt} = \text{rotation in rad/s} \]
\[\varepsilon = -\frac{d\Phi}{dt} = -NBA (-\sin \Theta) \omega \]
\[\varepsilon = NBA \omega \sin \Theta \]

Maximum \(\varepsilon = NBA \omega \) \text{ (Generator)}

Compare \(\omega I = NBA I \sin \Theta \)

Max \(\omega I = NBA I \) \text{ (Motor)}
Torque of a generator:

- Opposes motion when I flows,
- Makes it hard to spin the crank.

EMF of a motor:

- Initially \(w=0 \), no EMF.
 Lots of current flows - high \(I \).
- When \(w \) reaches maximum:
 Lots of \(E \) opposes current.
 Motor spins with low \(P=VI \).
- When attached to a load:
 \(I \) requires \(I \), which flows because your load slowed \(w \).