A car stereo produces 96 dB sound (with all speakers) at a distance of 30 m. What sound level is produced at 15 m if half of the speakers are blown out?

\[I = \frac{P}{4\pi R^2} \]

(Point Source)

Power: Cut in half

\(P_{\text{final}} = \frac{1}{2} P_{\text{initial}} \)

Intensity:
\[\frac{0.5}{3^2} = \frac{1}{50} \]

What dB level is a factor of 50?

\[10^{1.7} = 50 \quad 17 \text{ dB} \]

Final level is
\[96 \text{ dB} - 17 \text{ dB} = 79 \text{ dB} \]

\[\beta = 10 \log \left(\frac{\text{Ratio}}{10} \right) \]

\[\beta = 10 \log (10) \]

\[\text{Ratio} = 10 \]
Optics - redirecting waves

Geometric Optics - Using the shape of a medium to control waves.

Two main effects
- Reflection - bouncing waves off a surface.
- Refraction - bending waves as they are transmitted into a new material.

Rays - Like a laser beam. Points in direction of energy flow.

Wave Fronts - Perpendicular to rays, these are the peaks and valleys of 2D & 3D waves.

Reflection & Refraction

Incident Ray \(\theta_i \) \(\rightarrow \) Reflected Ray \(\theta_r \)

\[n_1 = \text{Air} \]
\[n_2 = 1.33 \text{ Water} \]

Snell's Law
\[n_1 \sin \theta_i = n_2 \sin \theta_2 \]

Transmitted Ray

\(n = \text{index of refraction} \)
Ex: \(n_1 = 1 \quad n_2 = 1.33 \)
\[\theta_1 = 45^\circ \]

1. \(\sin(45^\circ) = 1.33 \cdot \sin \theta_2 \)
2. \(0.832 = \sin \theta_2 \)
3. \(\theta_2 = 32^\circ \)

When the index of refraction increases, the ray bends toward the normal.

Ex: \(n_1 = 1.33 \quad n_2 = 1 \)
\[\theta_1 = 60^\circ \]

1. \(1.33 \cdot \sin(60^\circ) = 1 \cdot \sin \theta_2 \)
2. \(1.15 = \sin \theta_2 \)

There is no \(\theta_2 \).

No transmitted light. Total Internal Reflection

Applications:
- Fiber optics
- Binocular prisms

\[n_1 = 1.6 \]
\[\text{at } \theta_1 = 45^\circ \]
\[n_2 \sin \theta = 1.13 \]

(1) and (3): \(\Theta = 0 \)

Diagram: In \(\rightarrow \) Out
Why do waves refract?

How does a bulldozer turn?

\[\frac{d_1}{\sin \Theta_1} = \frac{d_2}{\sin \Theta_2} \]

Let \(n_1 = \frac{c}{v_1} \)

\[v_1 = \frac{c}{n_1} \]

\[\frac{c}{n_1 \sin \Theta_1} = \frac{c}{n_2 \sin \Theta_2} \]

\[\frac{c}{n_1} \frac{dx}{dt} = \frac{c}{n_2} \frac{dx}{dt} \]

\(n_1 \), describes slowing of light

\[\frac{c}{n_1} = \frac{c}{n_2} \frac{dx}{dt} \]

\[l_1 = v_1 dt = \frac{c dt}{n_1} \]

\[n_1 \sin \Theta_1 = n_2 \sin \Theta_2 \]
Mirages: Refraction from a gradient.

Slower

Faster

Speed of light in air decreases with high density.

\[\text{Air} \approx 1.0003 \]

\[PV = NRT \]

\[\frac{P}{T} = \frac{N}{V} R \]

High \(T \) \(\rightarrow \) Low density \(\rightarrow \) Fast light \(\rightarrow \) Higher index

Sound "Mirage"

Faster

Slower

Train (not to scale)

Speed of sound increases with temperature.