Exam 2 Aftermath

What happened? The document version that was proofread was not the version that was split to Version A and Version B, and then printed.

- 5 directly affected questions were thrown out.
- Question \#14 was counted as extra credit because it used the result of \#13. Lesson learned:

Avg: 67\%
"Lost" question Aug: 63\%
(From other students)
\#15-16

$$
\begin{aligned}
& 3 \mu F \text { capacitor } C=\frac{K \varepsilon_{0} A}{d} \\
& \text { Freq of power supply halved }
\end{aligned}
$$

X_{c} doubles

must halve
\#11

\#b: F_{B} =Il B on earreach resists gravity

\#26-27:

$$
\begin{aligned}
& V_{B} \text { given }=30 \sin (4000 t) \\
& V_{R_{r m s}}=21.3 \mathrm{~V} \quad \begin{aligned}
V_{R} & =I R \\
(21.3) & =I(60) \\
0.35 \ldots & =I_{r m s}
\end{aligned} \\
& P_{\text {arg }}=I_{r m s}{ }^{2} R=V_{\text {Arms }} I_{r m s}=(21.3)(0.35)=7.5 \mathrm{w}
\end{aligned}
$$

$$
\text { Whole circuit: } \begin{aligned}
V_{r m s} & =I_{r m s} Z \\
V_{r m s} & =(0.353 \mathrm{~A})(100 \Omega) \\
\text { Power Sappy: } V_{r m 3} & =35.3 \mathrm{~V}
\end{aligned}
$$

Simplest oscillator: Harmonic oscillator made from a mass and a spring.

Spring Force:
Phys I:

$$
F_{s}=-k x_{s}
$$

compression

Using spring force to find the max compression is tough.

$$
\begin{aligned}
F_{\text {net }} & =m a \\
F_{s} & =m a_{s} \quad\left(\text { Block's } x=x_{5}\right) \\
-k x_{s} & =m \frac{d^{2} x_{5}}{d t}
\end{aligned}
$$

What is x_{s} as a function of time?

$$
\begin{gathered}
x_{5}=x_{0} \sin (\omega t)=x_{0} \sin (2 \pi f t) \\
v_{s}=\frac{d x_{5}}{d t}=x_{0} \cos (\omega t) \omega \\
a_{s}=\frac{d^{2} x_{5}}{d t^{2}}=\omega x_{0}(-\sin (\omega t)) \omega=-\omega^{2} x_{0} \sin (\omega t) \\
-k_{s} x_{5}=m\left[-\omega^{2} x_{5}\right] \\
k=m \omega^{2} \quad \omega^{2}=\frac{k}{m} \quad \omega=\sqrt{k / m} \\
\begin{array}{l}
\text { The mass-and-spring traces out a sinewave with } \\
\text { an angular frequency as calculated above. }
\end{array} \quad f=\frac{\omega=\frac{\omega}{2 \pi}}{}=\frac{1}{2 \pi} \sqrt{k / m}
\end{gathered}
$$

How is this related to the given situation?

$$
V_{i}=V_{0}=\text { given } \quad V_{s}=\omega x_{0} \cos (w t)
$$

$$
\text { V ave }_{a x} x_{s}=x_{0} \sin (\omega t) \quad t=0 s v_{s}=\omega x_{0}
$$

For an oscillation, the displacement amplitude (x0) is proportional to the velocity amplitude (vO).

How did we do this in Physics I? Conservation of energy.

$$
\begin{aligned}
& \text { Spring Energy: } U_{s}=\frac{1}{2} k x_{s}{ }^{2} \\
& I_{\text {niticel }}=\text { Final }^{\text {spring }} \\
& \text { Kinetic Energy: } K=\frac{1}{2} m v^{2} \\
& \frac{1}{2} m v_{i}^{2}+0=0+\frac{1}{2} k x_{f}^{2} \\
& v_{t}{ }^{2}=\frac{k}{m} x_{f}{ }^{2} \\
& V_{i} \div \sqrt{\frac{k}{k}} x_{f}
\end{aligned}
$$

The energy analysis and the oscillation analysis produce the same result.

If the mass is attached to the spring, it will continue to follow the sinewave function indefinitely. This is a basic oscillation.

$$
\begin{array}{rlrl}
\text { Generic: } & x & =x_{0} \sin (\omega t-\phi) \\
\text { Frequency: } \quad \omega & =\text { angular Freq } \quad f=\text { frequency } \\
\omega & =2 \pi f=\text { depend on which } \\
& \text { objects are involved }
\end{array}
$$

Amplitude: $x_{0}=$ amplitude $\quad v_{0}=\omega x_{0}=$ max speed depend on setup.
Phase: $\phi=$ initial phase $\quad t_{0}=$ start time

$$
\begin{aligned}
& (\omega t-\phi)=\omega\left(t-t_{0}\right) \\
& \sin \left(\omega\left(t-t_{0}\right)\right) \operatorname{starts} @ t_{0}
\end{aligned}
$$

Note: It's common to adjust the phase by pi /2 by switching from a sine to a cosine.

$$
x_{0} \sin (\omega t)=x_{0} \cos (\omega t-\pi / 2)
$$

Cofunctions of Complimentary Angles are equal

$$
\sin (\theta)=\cos \left(\frac{\pi}{2}-\theta\right)
$$

Cosine is even

$$
\cos \left(\frac{\pi}{2}-\theta\right)=\cos \left(\theta-\frac{\pi}{2}\right)
$$

Another common way of dealing with phase is to split the function into sine and cosine components.

$$
\begin{array}{rlrl}
x_{0} \sin (\omega t-\phi) & =A \sin (\omega t) \times B \cos (\omega t) \\
x_{0}^{2} & =A^{2}+B^{2} & A=x_{0} \sin \phi \\
\tan \phi & =-B / A(?) & B=-x_{0} \cos \phi
\end{array}
$$

This form is used when there is nonzero initial position *and* nonzero initial velocity.

$$
\begin{aligned}
& \text { Initial position }=B \\
& \text { Initial velocity }=W A
\end{aligned}
$$

Mass-and-spring oscillator. $m=0.25 \mathrm{~kg} \quad k=50 \mathrm{k} / \mathrm{m}$

$$
f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}=\frac{1}{2 \pi} \sqrt{\frac{50}{0.25}}=2.25 \mathrm{~Hz}
$$

Given an initial displacement of 1 cm and an initial speed of $15 \mathrm{~cm} / \mathrm{s}$, what are the amplitude and max speed?

$$
\begin{aligned}
& x(t)= A \sin (\omega t)+B \cos (\omega t) \\
& B=0.01 \mathrm{~m}=\text { initial displacement, } \\
& \omega=2 \pi f=\sqrt{\frac{50}{0.25}}=14.14 \mathrm{rad} / \mathrm{s} \\
& \omega A=v_{2}
\end{aligned}
$$

$14.14 A=0.15 \mathrm{~m} / \mathrm{s}=$ initial speed

$$
A=\frac{0,15}{14,14}=0.0106 \mathrm{~m}
$$

Amplitude $x_{0}=\sqrt{A^{2}+B^{2}}=\sqrt{0.01^{2}+0.0106^{2}}$

$$
=0.0146 \mathrm{~m}=1.46 \mathrm{~cm}
$$

Flax speed $v_{0}=\omega x_{0}=(14.14)(0.0146)$

$$
=0.206 \mathrm{~m} / \mathrm{s}=20.6 \mathrm{~cm} / \mathrm{s}
$$

Wave visuals: https://www.acs.psu.edu/drussell/demos.html (or Google: Dan Russell waves)

Waves are not stuff.
A wave is an organized disturbance in a set of coupled oscillators.

- Coupled: Displacement of one oscillator exerts a force on its neighbors.
- Disturbance: Can be a pulse, but often an oscillation

General wave solution:

$$
\begin{aligned}
& f(x-v t) \\
& \sin \left(\frac{2 \pi x}{\lambda}-2 \pi f t\right)
\end{aligned}
$$

Oscillating wave solutions:

$$
\begin{gathered}
\text { Repeats when: } \Delta\left(\frac{2 \pi x}{\lambda}\right)=2 \pi \quad \Delta x=\lambda=\text { wavelength } \\
\Delta(2 \pi f t)=2 \pi \quad \Delta t=\frac{1}{f}=T=\text { period } \\
\text { Ware speed: }\left(\frac{2 \pi x}{\lambda}-2 \pi f t\right)=\frac{2 \pi}{\lambda}(x-f \lambda t) \\
V=f \lambda \quad V=\frac{\lambda}{T}
\end{gathered}
$$

The wave speed is the speed of propagation of the disturbance. No actual material is moving at that speed.

Sample wave speeds:

$$
\underbrace{\text { Sound }}_{v \approx 340 \mathrm{~m} / \mathrm{s}} \frac{\text { Light }}{v=3 \times 10^{8} \mathrm{~m} / \mathrm{s}} \quad \frac{\text { String }}{v=\sqrt{F_{T} / \mu} \quad v \approx 1-10 \mathrm{~m} / \mathrm{s}}
$$

All waves involve oscillations of at least 2 variables.
At least one of these variables is a vector. (no pure scalar waves)
The direction of the vector is either parallel or perpendicular to the
direction of the wave propagation velocity.

- Longitudinal: oscillations parallel to propagation.
- Transverse: oscillations perpendicular to propagation.

$$
\begin{gathered}
v=f \lambda \\
\lambda_{1}=\frac{340 \mathrm{~m} / \mathrm{s}}{20 \mathrm{~Hz}}=17 \mathrm{~m}
\end{gathered}
$$

Range of audible sound waves: 20 Hz to 20 kHz

$$
f_{1}=20 \mathrm{~Hz} \quad v=340 \mathrm{~m} / \mathrm{s} \quad \lambda_{1}=\frac{340 \mathrm{~m} / \mathrm{s}}{20 \mathrm{~Hz}}=17 \mathrm{~m}
$$

Typical musical instrument is $1 / 4$ wavelength.

$$
f_{2}=20 \mathrm{kHz}
$$

$$
\lambda_{2}=\frac{340 \mathrm{~m} / \mathrm{s}}{20 \mathrm{kHz}}=17 \mathrm{~mm}=0.017 \mathrm{~m}
$$

When oscillators are coupled, the frequency of the oscillations is maintained as the disturbance moves from one to the other.

Exception: When the source and/or observer is moving toward or away from the wave.

When the source is moving away from the wave, each successive peak has to travel a further distance. This stretches out the wavelength of the wave.

By the time an observer hears the sound, the peaks occur at more separated times.

Source moving away -> observed frequency is slower (lower freq)

The moving observer detects successive peaks at different times than a stationary observer, because each peak must travel further.
Observer moving away -> observed frequency is slower (lower freq)

$$
f_{0}=f_{s} \frac{v+v_{0}}{v-v_{5}} \quad \begin{aligned}
& +v_{0}=\text { toward wave } \\
& +v_{5}=\text { toward wave }
\end{aligned}
$$

For light waves, the formula is more complicated.

$$
f_{0}=f_{s} \sqrt{\frac{v+v_{r e l}}{v-v_{r e l}}}+v_{r e l}=\text { toward each other }
$$

Simple version (use this whenever possible):

$$
\frac{\Delta f}{f}=\frac{v_{\text {rel }}}{v_{\text {wave }}}
$$

Good when

$$
v_{\text {rel }}<15 \% \quad v_{\text {wave }}
$$

Waves in general:

$$
f(x, t)=A \sin \left(\frac{2 \pi}{\lambda} x-2 \pi f t\right)
$$

Wavelength: $\lambda=$ repeat distance
Frequency: $\quad f=1 / T \quad T=$ period = repeat time
Wave interference: When two waves meet, their functions add. (superposition principle)

When two sinewaves meet, and they have the same frequency, they can add or subtract depending on their relative phase.

The relative phase between the two waves determines how they add.

$$
\begin{aligned}
& \Delta \phi=0,2 \pi, 4 \pi, \cdots \quad \text { constructive } \\
& f_{1}=\sin \left(\frac{2 \pi}{\lambda} x-2 \pi f t+\phi_{1}\right) \quad \Delta \phi=\phi_{2}-\phi_{1} \\
& f_{2}=\sin \left(\cdots x-\cdots t+\phi_{2}\right) \quad \text { destructive } \\
& \Delta \Phi=\pi, 3 \pi, 5 \pi, \cdots \quad
\end{aligned}
$$

Reflection: A wave's energy can "bounce" off a surface or a discontinuity in the medium. During reflection, a wave basically generates a reverse-direction copy of itself.
At the point of reflection, either the wave or its conjugate must be zero.

Ex: Reflection of string waves.

- Fixed end must have zero displacement. The reflected wave must combine with the original wave to cancel out and achieve a zero value at the point of reflection.
- Free end must have peak displacement. The reflected wave is "right-side-up" as compared to the original wave.
An upside-down reflection is like a phase addition of pi.
Traveling waves can add to form standing waves.

$$
y(x, t)=y_{m} \sin (\mathrm{kx}-\omega \mathrm{t})+y_{m} \sin (\mathrm{kx}+\omega \mathrm{t})=2 y_{m} \sin (\mathrm{kx}) \cos (\omega \mathrm{t})
$$

Standing wave resonance is caused when a wave reflects back and forth in a cavity. (A region that carries the wave and has reflective ends.) The wave can interfere with itself.

This only happens if the copy of the wave "lines up" with the original wave. The travel distance is $2 L$, twice the cavity length.
 wave looks
$2 L=n \lambda$
wave constructively interferes with its own reflection.

$$
\begin{array}{ll}
n=1 & \lambda=2 L \\
n=2 & \lambda=L \\
n=3 & \lambda=\frac{2 L}{3}
\end{array} \quad \lambda=\frac{2 L}{n}
$$

Often were concerned with frequencies.

$$
\begin{aligned}
& v=F \lambda \\
& v=\sqrt{F_{T} / \mu}
\end{aligned}
$$

$$
\begin{gathered}
v=\text { speed of wave } \\
\text { on the string }
\end{gathered}
$$

$$
f=\frac{v}{\lambda}=\frac{\sqrt{V} n}{2 L}
$$

$$
f=f_{1} n
$$

This can happen with sound waves as well. The reflection is a little different, but the same math applies.

If the two ends of the cavity produce *different* kinds of reflections (one reversing and one not), then we're looking for a time when the sinewave is *opposite* of what it is at the origin.

$2 L=\left(n+\frac{1}{2}\right) \lambda$ constructive (diff ends)
$4 L=(2 n+1) \lambda$
$4 L=n^{\prime} \lambda \quad n^{\prime}=1,3,5, \cdots$
With *different* ends, the longest wavelength is 4 L .

$$
\lambda=\frac{4 L}{n^{\prime}}
$$

$$
\begin{aligned}
& f=\frac{v}{\lambda}=\sum_{L f_{1}}=\frac{v}{4 L} n^{\prime} \quad\left(n^{\prime}=1,3,5, \cdots\right) \\
& f=f_{1} n^{\prime} \quad \text { (only odd harmonics) }
\end{aligned}
$$

Ex: Air cavity with open ends, length $=0.8 \mathrm{~m}$.

$$
\begin{array}{rlrl}
v=340 \mathrm{~m} / \mathrm{s} \quad \lambda_{1} & =2 L=1.6 \mathrm{~m} \quad f_{1}=\frac{340 \mathrm{~m} / \mathrm{s}}{1.6 \mathrm{~m}}=212.5 \mathrm{~Hz} \\
f_{2}=2 f_{1} & =425 \mathrm{~Hz} \quad f_{3}=3 f_{1}=617.5 \mathrm{~Hz} \\
\Delta f & =212.5 \mathrm{~Hz} &
\end{array}
$$

What if one end is blocked?

$$
\begin{aligned}
& \lambda_{1}=4 L=3.2 \mathrm{~m} \quad f_{1}=\frac{340 \mathrm{~m} / \mathrm{s}}{3.2 \mathrm{~m}}=106.2 \\
& \text { allowed } \quad f_{3}=3 f_{1}=318.75 \mathrm{~Hz} \\
& \Delta f=318.75-106.25=212.5 \mathrm{~Hz}
\end{aligned}
$$

Same Ends

$$
\begin{aligned}
& \lambda_{1}=2 L \\
& f=n F_{1} \quad n=1,2,3, \ldots
\end{aligned}
$$

$$
\frac{D_{1} F_{0} \text { Ends }}{\lambda_{1}=42}
$$

$$
F=n^{\prime} f_{1} \quad n^{\prime}=1,3,5, \ldots
$$

Example from RF theory: 1/4 wave antenna:

$$
\begin{aligned}
& f_{1}=4 \mathrm{MHz} \\
& L=58,5 \text { ff }=12.83 \mathrm{~m} \quad \lambda_{1}=42=71.32 \mathrm{~m} \\
& v=f \lambda=285.28 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

According to "standard" antenna calculations, the speed of RF waves on the wire is $2.85 \mathrm{e} 8 \mathrm{~m} / \mathrm{s}$.

$$
c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& \rho=\frac{\Delta E_{\text {energy }}}{\Delta t} \\
& I=\frac{P}{\text { Ares }} \\
& \text { Intensity }
\end{aligned}
$$

Two basic "shapes" of waves:

- Plane waves: Uniform intensity and propagation direction. Wave fronts form planes.
- Spherical waves: Generated by a point source and spread from there. Propagation direction is radially away from source. Intensity is strong near the source and gets weaker with distance. Wave fronts form spheres.

For travelling waves, the power of each wave front is consistent.

$$
\text { Spherical: } \begin{aligned}
P & =I A & (\cos \theta=1 \text { b/c propagation } \\
P & =I 4 \pi r^{2} & \text { perp to wave front) } \\
\frac{P}{4 \pi r^{2}} & =I &
\end{aligned}
$$

Ex: A light source has an intensity of $100 \mathrm{~W} / \mathrm{m}^{2}$ at 10 m , how bright is it at 20 m ?

$$
I \propto \frac{1}{R^{2}} \quad \frac{I_{2}}{I_{1}}=\left(\frac{1 / R_{2}}{1 / R_{1}}\right)^{2}
$$

$$
\begin{gathered}
\frac{I_{2}}{I_{1}}=\left(\frac{R_{1}}{R_{2}}\right)^{2} \\
I_{2}=\frac{1}{4} I_{1}=25 \mathrm{~W} / \mathrm{m}^{2} 2 \quad \frac{I_{2}}{I_{1}}=\left(\frac{10}{20}\right)^{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}
\end{gathered}
$$

Energy, power, and intensity span huge ranges of values.

$$
\frac{I_{\max }}{I_{\min }} \sim 10^{10}
$$

"Level" is a way of describing energy-like quantities on a logarithmic scale. This compresses large values and stretches small values.
Ratios between related values always have the same size.
There is no way to represent zero intensity.
Levels *always* represent ratios. The value (in decibels) represents some factor between two intensities. \curvearrowleft Level in $d B$

$$
\begin{aligned}
& \frac{I}{I_{0}}=10^{\beta / 10} \\
& \log _{10}\left(\frac{I}{I_{0}}\right)=\beta / 10 \rightarrow \beta=10 \log _{10}\left(\frac{I}{I_{0}}\right)
\end{aligned}
$$

Because beta is an exponent, addition of levels (in dB) corresponds to multiplying the intensity several times.

Zero decibels means no change.
One decibel is a 26% increase.
3 dB is a doubling of intensity.
5 dB is approx. tripling intensity. 7 dB is a factor of 5

10 dB is a tenfold increase

$$
10^{\wedge-3.7}=0.0002
$$

$$
1 / 5000=0.0002
$$

A speaker produces a 75 dB sound when it is 3.0 m away. How loud is the sound from 5.0 m ?

$$
\begin{array}{r}
\frac{I}{I}=\left(\frac{3}{5}\right)^{2}=0.36 \quad \log _{10}(0.36)=-0.44 \\
\Delta \beta=-4.4 \mathrm{~dB} \\
\beta=\beta_{0}+\Delta \beta=75 \mathrm{~dB}-4.4 \mathrm{~dB}=70.6 \mathrm{~dB}
\end{array}
$$

One quirk: Sometimes EEEN's talk about decibel levels for voltages.
Power is proportional to voltage squared.

$$
P=I V=I^{2} R=V^{2} / R
$$

A tenfold increase in V actually increases P by 100 times.
So this is +20 dB increase.

$$
\beta=10 \log _{10}\left(\frac{P}{P_{0}}\right) \quad \beta=20 \log _{10}\left(\frac{V}{V_{0}}\right)
$$

Transverse waves (like light) involve oscillations perpendicular to the propagation direction. This is not unique. Polarization is the direction of oscillations in a transverse wave.

The polarization of light is the direction of the electric field oscillations.
Light can be of one polarization or it can be a mixture.

- Most light is non-polarized. The E oscillations fluctuate.
- Polarized light has E oscillations that are organized.
- Sky glare off of the surface of a body of water tends to be horizontally polarized. (Brewster's Angle)
- Polarizing filters will filter out a particular polarization, and pass light of the opposite polarization. Vertical polarizers filter out horizontally polarized light.

How much light gets through a polarizer?

$$
\begin{aligned}
& \text { Incoming } \\
& \text { Unpolarized }
\end{aligned} \quad I=\frac{1}{2} I_{0} \quad \begin{aligned}
& \text { Incoming } \\
& \text { Polarized }
\end{aligned} \quad I=I_{0} \cos ^{2} \theta
$$

Stack of polarizers:

$$
\begin{aligned}
& \xrightarrow[I_{0}=100 \mathrm{~W} / \mathrm{m}^{2}]{\text { Unpolarized }}\left|{ }_{I_{1}=50 \mathrm{w} / \mathrm{m}^{2}}^{0^{\circ} \text { Polarized }}\right| \xrightarrow[I_{2}=37.5 \mathrm{w}^{2} / \mathrm{m}^{2}]{30^{\circ} \text { Polarized }} \mid \xrightarrow[I_{3}=9.4 \mathrm{w} / \mathrm{m}^{2}]{90^{\circ} \text { Polarized }} \\
& 0^{\circ} \text { Polarizer } \quad 30^{\circ} \text { Polarizer } \quad 90^{\circ} \text { Polarizer } \\
& I_{2}=I_{1} \cos ^{2} \theta_{12}=(50) \cos ^{2}\left(30^{\circ}\right)=(30)\left(\frac{3}{4}\right)=37.5 \mathrm{w} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& I_{2}=I_{1} \cos ^{2} \theta_{12}=(50) \cos ^{2}\left(30^{\circ}\right)=(30)\left(\frac{3}{4}\right)=37.5 \mathrm{~m} / \mathrm{m}^{2} \\
& I_{3}=I_{2} \cos ^{2} \theta_{23}=(37.5) \cos ^{2}\left(60^{\circ}\right)=(37.5)\left(\frac{1}{4}\right)=9.4 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

What would happen if the second polarizer was removed?
(No light would get through the third polarizer.)
How many decibels of change did the intensity have?

$$
\begin{aligned}
\frac{I}{I_{0}}=\frac{9.4}{100}=0.094 \quad & =10 \log \left(\frac{I}{I_{0}}\right)=10 \log (0.094) \\
& =-10.3 d B
\end{aligned}
$$

When you see something clearly focused in front of you, you're seeing a field of points, each of which emits rays like above.

- Nearby objects produce strongly diverging rays.
- Far objects produce weakly diverging rays.
- Infinitely far objects produce parallel rays.

What are rays? Paths that trace the flow of energy.

- Velocity: For light:

$$
\begin{aligned}
& \text { energy. } \\
& v=6=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

- In a material:

$$
v=\frac{c}{n} \quad n=\text { index of refraction }
$$

$$
\text { Ex: } \quad n_{w}=1.33 \quad v=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{4 / 3}=2.25 \times 10^{8 \mathrm{~m}} / \mathrm{s}
$$

Normally, light travels in straight lines. How can we change this?

- Doppler shift. (Frequency changes due to motion.
- Diffraction: Light passing a barrier spreads out to fill the shadow region.
- Absorption: Energy being absorbed by a material.
- Scattering: Energy deflected by small objects.
- Reflection: Organized deflection of energy by a surface.
- Refraction: Bending of light by a surface of a new material.

Any of these can combine to simulate the rays we are used to seeing. We start by looking at refraction of a single ray.

$$
\theta_{1}^{\prime}=\theta_{1}
$$

$$
\begin{aligned}
n_{1} \sin \theta_{1} & =n_{2} \sin \theta_{2} \\
(1) \sin \left(40^{\circ}\right) & =(1.33) \sin \theta_{2} \\
0.4833 & =\sin \theta_{2} \\
28.9^{\circ} & =\theta_{2}
\end{aligned}
$$

What if the light speeds up?

Arr

$$
\begin{gathered}
n_{1} \sin \theta_{1}=r_{2} \sin \theta_{2} \\
\left.(1.5) \sin (4)^{\circ}\right)=(1) \sin \theta_{2} \\
0.9642=\sin \theta_{2} \\
74.6^{\circ}=\theta_{2}
\end{gathered}
$$

What if? $\quad \theta_{1}=50^{\circ}$

$$
\begin{aligned}
&(1.5) \sin \left(50^{\circ}\right)=(1) \sin \theta_{z} \\
& 1.149=\sin \theta_{z} \\
& \text { no valid } \theta_{2} \\
& \text { no refraction }
\end{aligned}
$$

Total Internal Reflection - When light in a material hits the outer surface at a glancing angle, it can get stuck inside the original material.
The threshold condition is called the critical angle. Set $\theta_{2}=90^{\circ}$

$$
\begin{aligned}
n_{1} \sin \theta_{e} & =n_{2} \\
\sin \theta_{e} & =n_{2} / n_{1}
\end{aligned}
$$

For glass-air:

$$
\sin \theta=1.0 \quad \theta_{-}=41.8^{\circ}
$$

For glass-air:

$$
\sin \theta_{c}=\frac{1.0}{1.5} \quad \theta_{c}=41.8^{\circ}
$$

 perpendicular, then no light gets reflected. Why? the oscillations are parallel to the

$$
\theta_{1}+\theta_{2}=90^{\circ} \quad \sin \theta_{2}=\cos \theta_{1}
$$ oscillation of E to generate the

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$ reflected ray.

$$
n_{1} \sin \theta_{1}=n_{2} \cos \theta_{1}
$$

$$
\tan \theta_{1}=n_{2} / n_{1} \quad \text { Condition to cause no reflection. }
$$

If the reflected and transmitted rays are

- Reflected ray is actually formed by oscillations in the second material. If reflected ray, there is no transverse
This only happens when the polarization is in the plane of incidence. For horizontal surfaces, this means vertical polarization can be excluded. This is why glare from water and roads tends to be horizontally polarized. Vertically polarized light gets filtered out by the reflection.

Lenses use refraction to change the pattern of rays and fool the observer into seeing things differently.

In the above diagrams:

$$
n=\infty \quad 0=5 \mathrm{~cm}
$$

$$
\begin{aligned}
& \frac{\theta^{0}}{\not \partial b}+\frac{1}{5 c m}=\frac{1}{f} \\
& f=5-m
\end{aligned}
$$

Converging

$$
p=\infty \quad q=5 \mathrm{~cm} \quad \text { ph } \begin{array}{ll}
5 \mathrm{~cm} f \\
f=5 \mathrm{~cm} & f=
\end{array} \quad \text { Converging }
$$

$$
F=-5 \mathrm{~cm} \text { Diverging }
$$

What happens if $p=15 \mathrm{~cm}$ with the converging lens? $(f=5 \mathrm{~cm})$

$$
\begin{array}{lrl}
\frac{1}{p}+\frac{1}{2} & =\frac{1}{5} \\
\frac{1}{15}+\frac{1}{2} & =\frac{1}{5}
\end{array} \quad \eta \begin{array}{ll}
\frac{1}{2}=\frac{1}{5}-\frac{1}{15} & =\frac{2}{15} \\
q & =\frac{15}{2}=7.5 \mathrm{~cm}
\end{array}
$$

Bringing the object closer made the image go further away.
What happens if $=2.5 \mathrm{~cm}$ with the converging lens?

$$
\left.\frac{1}{2.5}+\frac{1}{2}=\frac{1}{3}\right) \rightarrow \frac{1}{2}=\frac{1}{5}-\left(\frac{1}{2.5}=\frac{-1}{5}\right.
$$

smaller than

$$
\begin{aligned}
& \text { Smaller than } \\
& \text { focal length }
\end{aligned} \quad q=-5 \mathrm{~cm}
$$

Placing the object closer than the focal distance causes q to go negative.

Our eyes are basically biological cameras, consisting of a converging lens and a screen.

We can view actual objects at a range of distances.

- Near point: Closest focusable object distance.
- Far point: Furthest focusable object distance.

$$
\begin{aligned}
\operatorname{good} d_{n p} & =25 \mathrm{~cm} \\
d_{f_{p}} & =\infty
\end{aligned}
$$

Nearsightedness is the inability to see infinitely far objects.

$$
d_{f_{p}}<\infty
$$

Farsightedness is an inability to see near things. $\quad d_{n p}>25 \mathrm{~cm}$
What is the range of focal distances of the eye?

$$
\begin{aligned}
& \text { Near: } \quad p=25 \mathrm{~cm} \quad q=3 \mathrm{~cm} \quad \frac{1}{p}+\frac{1}{q}=\frac{1}{f} \\
& 2.68 \mathrm{~cm}=\left(\frac{1}{25}+\frac{1}{3}\right)^{-1}=f \\
& \text { Far: } \quad p=\infty \quad q=3 \mathrm{~cm} \quad\left(\frac{1}{\infty}+\frac{1}{3}\right)^{-1}=f \\
& 3 \mathrm{~cm}=f
\end{aligned}
$$

To figure out how to correct vision problems, we have to look at how to view images.

To view a virtual image, we look into the lens, viewing the image rays that are refracted and appear to come from the image.

The image from the magnifier becomes the object as far as our eyes are concerned. Since the image is further than the object, a farsighted person might find this useful. Note: q doesn't become p.

Ex: Trying to read something 25 cm away, with a near point of 35 cm . The eyeglasses lens is 2 cm from my eye.

$$
\text { Lens: } \begin{aligned}
p & =23 \mathrm{~cm} \\
q & =-33 \mathrm{~cm}
\end{aligned} \quad f=\left(\frac{1}{p}+\frac{1}{2}\right)^{-1}=75.9 \mathrm{~cm}
$$

Lens power is the inverse of the focal length (in meters).

$$
\text { Power }=\frac{1}{f}=\frac{1}{0.759}=1.32 \text { diopters }
$$

With contact lenses, the distance between the lens and the eye is practically zero. The converging lens corrects farsightedness.

- My eye needs gently diverging rays (from a far object).
- Nearby objects make strongly diverging rays.
- The converging eyeglasses give those rays a nudge so that they're not strongly diverging any longer. Lens eye

For a nearsighted person, the same thing can be done, but using a diverging lens.

Practically, we use a magnifier to increase the size of an image on the back of our eye, not just the image of a lens.

Angular size is the most useful measure.

When viewing details, the small angle approx is okay.
A lens's magnification is its ability to increase the angular size of a detail, as compared to what we can do without the lens.

Without Lens:

$$
\theta_{0}=\frac{h}{25 \mathrm{~cm}}
$$

With Lens: Place image at infinity (Relaxed viewing)
Given f, where is $p=o b$,edt location?

$$
\frac{1}{p}+\frac{1}{p}=\frac{1}{f} \quad p=f
$$

$$
\theta=\frac{h}{f}
$$

Angular magnification:

$$
M \|_{\theta}=\frac{\theta}{\theta_{0}}=\frac{h / f}{h / 25 \mathrm{~cm}}=\frac{25 \mathrm{~cm}}{f}
$$

If we move the object closer to the lens, we can squeeze out one more factor of magnification.

$$
\left.\max \quad H\right|_{\theta}=\frac{25 \operatorname{cin}}{f}+1
$$

Ex: Lens sold as having a magnification of 5 times:

$$
\begin{aligned}
5= & \frac{25 \mathrm{~cm}}{f}+1 \\
4= & \frac{25 \mathrm{~cm}}{f} \\
f & =\frac{25 \mathrm{~cm}}{4}=6.25 \mathrm{~cm} \\
\text { Power }= & \frac{1}{0.0625}=16 \text { diopters }
\end{aligned}
$$

Compound Microscope and Telescope
Both of these devices involve generating and viewing a real image.

- Microscope: Object is close, but must be outside focal length of objective lens.
- Telescope: Object is at infinity.

The Objective lens is a converging lens that is projecting a real image.
How can we view the real image?

- Move back to a point further than the image.
- Place a screen at the image location.
- Intercept the image rays with another lens. This is the eyepiece.

What makes a wave propagate?

- Waves are governed by local differential equations.
- A wave is a propagating disturbance in a series of coupled oscillators.
- Every oscillator radiates waves in every direction. Thinking about this is way too much.
Huygens Principle
- Consider every point along a wave front.
- These points radiate in all "forward" directions.

- If we don't interrupt the wave, it will continue to propagate as normal.
- If we block most of the wave, except a little hole, that hole will radiate like a wave source. This is diffraction.

Two-slit interference

Two set's of spherical waves

The interference pattern is determined by the relative phase of the two waves.

$$
\begin{aligned}
& f_{1}=A \sin \left(2 \pi f t+\phi_{1}\right) \\
& f_{2}=A \sin \left(2 \pi f t+\phi_{2}\right) \\
& \Delta \phi=0,2 \pi, 4 \pi, \cdots \\
& \Delta \phi=\pi, 3 \pi, 5 \pi, \cdots \quad \text { Constructive } \\
& \Delta \text { Destructive }
\end{aligned}
$$

In the two-slit experiment, the phase difference is caused by a path length difference.

If the path length difference (ΔL) is an integer number of wavelengths, the interference is constructive. To find a formula for it, zoom in on Integer? the two slits.

$$
\begin{aligned}
& \mu=d \sin \theta \\
& m_{d}=d \sin \theta
\end{aligned}
$$

So how do we measure theta?

$$
\tan \theta=\frac{y}{L}
$$

What does the pattern look like?

- If y causes theta to cause m to be an integer, there is a bright area.

A diffraction grating is actually many slits, called lines. Since they're so close, they're described by a density.

$$
m d=d \sin \theta
$$

$$
\begin{aligned}
& \rho=250 \text { lines } / \mathrm{mm} \\
& d=\frac{1 \mathrm{~mm}}{250}=0.004 \mathrm{~mm}=4 \mu \mathrm{~m}=4000 \mathrm{~nm}
\end{aligned}
$$

Green light has a wavelength of about 530 nm .

$$
\begin{aligned}
& m(530 \mathrm{~nm})=(4000 \mathrm{~nm}) \sin \theta \\
& \begin{array}{ccc}
\frac{m}{2} & \frac{\theta}{0} & \frac{530}{4000}=\sin \theta_{1} \\
\pm 1 & \pm 7.6^{\circ} & 2\left(\frac{530}{4000}\right)=\sin \theta_{2} \\
\pm 2 & \pm 15.4^{\circ} & \vdots\left(\frac{530}{4000}\right)=\sin \theta_{7}
\end{array} \\
& \$\left(\frac{530}{4000}\right)=\sin \theta \text { Invalid }
\end{aligned}
$$

There are a total of 15 bright green spots for a 250 line/ mm diffraction grating.

If a combination of colors (different wavelengths) hits a diffraction grating, which are deflected to the largest angles?

$$
m_{\lambda}=d \sin \theta
$$

Bigger wavelength $=$ bigger theta

It's possible for the nth order red light to overlap with the $(n+1)$ st order blue light.

$$
\begin{aligned}
& \lambda_{\text {red }}=650 \\
& \lambda_{\text {blue }}=410
\end{aligned}
$$

$$
\begin{array}{cccc}
m=1 & 2 & 3 & 4 \\
m \lambda=650 & 1300 & 1950 \\
m \lambda=410 & 820 & 1230 & 1640
\end{array}
$$

$\mathrm{m}=2$ red light reaches out to higher angles than the $\mathrm{m}=3$ blue light.

$$
\Delta \phi=0,2 \pi, \cdots \text { Constructive }
$$

Two contributions to the phase difference:

- Path length difference
- Type of reflection

$$
\Delta \phi=\frac{2 \pi \Delta L}{d}
$$

$$
\Delta \phi= \begin{cases}0 & \text { Same type } \\ \pi & \text { Opposite types }\end{cases}
$$

$$
\begin{aligned}
m 2 \pi=\Delta \phi & =\frac{2 \pi \Delta L}{\lambda} \stackrel{?}{+}[\pi] \\
(m 2 \pi & =\frac{2 \pi \Delta L}{\lambda}+? \\
m \lambda & =\Delta L \stackrel{?}{+}+\frac{\lambda}{2} \\
\left(m \stackrel{?}{-} \frac{1}{2}\right) \lambda & =\Delta L
\end{aligned}
$$

If the path length difference makes $\mathrm{m}=$ integer, the interference is constructive.

- The path length difference is 2 times the film thickness.
- The wavelength must be measured in the film.

$$
\begin{aligned}
\frac{c}{n}=v & =f \lambda \\
\frac{\lambda}{n} & =\lambda_{n}
\end{aligned}
$$

- The reflection type is determined by the indices of refraction.

$$
\begin{array}{ll}
\left(m-\frac{?}{2}\right) \lambda_{n}=2 t & t=\text { thickness } \\
& \lambda_{n}=\lambda_{2} / n_{\text {fin }}
\end{array}
$$

A film of oil ($\mathrm{n}=1.4$) is on water ($\mathrm{n}=1.33$).
What is the minimum thickness that will cause constructive interference of red light?

$$
\text { Yes, use } \frac{-1}{2}
$$

$$
\begin{aligned}
(m-1 / 2) \lambda_{n} & =2 t^{\prime} \\
\left(1-\frac{1}{2}\right)\left(\frac{650 \mathrm{~nm}}{1.4}\right) & =2 t \\
232 \mathrm{~nm} & =2 t \\
116 \mathrm{~nm} & =t
\end{aligned}
$$

Any thickness less than this will cause destructive interference. That would make the film invisible.

Review for Final

Tuesday, December 3, 2019 9:28 AM
Final Exam Info

- Thu 12/12, 8am, EN-108 (i.e. here)
- Bring a pencil(s) and a calculator with fresh batteries.

Office hours: 11-4 each day except Friday $12 / 6$ and Monday 12/9.
Last-minute HW Extensions: Use WebAssign Extension Request See Syllabus for policy. Absolute deadline is day of Final.

Physical law: $\quad m d=d \sin \theta \quad m=0_{0} t \neq 12, \ldots$
Described by density:

$$
\begin{aligned}
& d \sin \theta \quad m=0_{0} t_{1}+2, \ldots \\
& \rho=\frac{1}{d} \quad E_{x}: \quad \begin{aligned}
\rho & =500 \text { lines } / \mathrm{mm} \\
d & =\frac{1 \mathrm{~mm}}{300}=0,002 \mathrm{~mm} \\
& =2 \mu \mathrm{~m}=2000 \mathrm{~nm}
\end{aligned}
\end{aligned}
$$

Limit of m values:

$$
\begin{aligned}
& \sin \theta<1 \\
& \frac{m \lambda}{d}<1 \quad m<\frac{d}{\lambda} \\
& d=200
\end{aligned}
$$

Ex: $\begin{aligned} & d=2000 \mathrm{~nm} \quad \frac{d}{d}=4.88 \\ & d=410 \mathrm{~nm}\end{aligned}$

Trend in angles:

$$
\begin{aligned}
& \quad m=0, \pm 1, \pm 2, t 3, \pm 4 \equiv 9 \text { dots } \\
& m \lambda=d \sin \theta
\end{aligned}
$$

Smaller $d \rightarrow$ larger θ

Charges generate E fields.
E fields are "linear": Each charge's contribution is added to the total E field.

$$
E_{p} r=\frac{k q}{r^{2}}
$$

(4) $\left\{\begin{array}{l}E_{1}=\text { away from } q_{1} \\ E_{2}=\text { tow ord } q_{2}\end{array}\right.$
$\theta_{\theta_{2}}$
Ex: Charges along a line:

$$
\longleftarrow d=5 \mathrm{~cm} \longrightarrow
$$

At midpoint:

$$
\begin{aligned}
E & =E_{1}+E_{2}=\left|\frac{k g_{1}}{r_{1}^{2}}\right|+\left|\frac{k q_{2}}{r_{2}^{2}}\right|=\frac{\left(9 \times 10^{9}\right)}{(0.025)^{2}}\left(2 \times 10^{-9}+8 \times 10^{-9}\right) \\
& =144000 \mathrm{~N} / \mathrm{c}
\end{aligned}
$$

Where could the electric field be zero?
At $B=E_{1}$ and E_{2} opp. dir. Check: $\left|E_{1}\right|=\left|E_{2}\right|$

$$
\frac{k\left|q_{1}\right|}{r_{1}^{2}}=\frac{k\left|q_{2}\right|}{r_{2}^{2}}
$$

Since point B is closer to the weaker charge, there is a point B where $\mathrm{E}=0$.

$$
\begin{aligned}
& \left(\frac{r_{2}}{r_{1}}\right)^{2}=\frac{\left|q_{2}\right|}{\left|q_{1}\right|}=\frac{8 n c}{2 n c}=4 \\
& \frac{r_{2}}{r_{1}}=2 \Rightarrow r_{2}=2 r_{1}
\end{aligned}
$$

(Similar situations happen in magnetostatics. There are locations near a pair of parallel wires where the net magnetic field is zero.)

This is how balanced transmission lines and twisted pair reduce noise.

The other source of electric fields is fluctuating B fields. (Faraday's Law)
Results of electric fields:

- Exert forces on charges (Coulomb force)

$$
\overrightarrow{F_{E}}=\eta_{0} \vec{E}
$$

- Fluctuating E generates B (Displacement current)

Big example of electrostatics: Parallel plate capacitor

$$
E=4 \pi k \sigma
$$

Why capacitors? Gathering +Q without the -Q would create HUGE electric fields that would tear our lab apart.

- The net charge of a capacitor is always zero.
- The capacitance doesn't depend on voltage or the rest of the circuit.
- Decibels always measure a ratio of energy-like quantities (energy, power, or intensity).

$$
I=I_{0} 10^{\beta / 10}
$$

An "absolute" sound level is referenced to:

$$
I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}
$$

$$
\text { Normal Conversation: } \beta=60 d B \quad \frac{I}{I_{0}}=10^{6}
$$

Normal conversation has an intensity of a million times the reference level.

When comparing two sounds via a relative level, one of the sounds is the reference.
Ex: 40 people talking simultaneously. How much louder is this than one person?

$$
\begin{aligned}
& \frac{I}{I_{0}}=40=10^{\beta / 10} \\
& \quad \log 40=\beta / 10 \\
& 10 \log 40=\beta=16 \mathrm{~dB}
\end{aligned}
$$

Easy dB values: $0 \mathrm{~dB}=$ factor of $13 \mathrm{~dB}=$ factor of $210 \mathrm{~dB}=$ factor of 10 Increasing or decreasing the intensity by multiplication and division corresponds to adding or subtracting the dB value.

Filters tend to be rated by a dB value.

Sound tends to radiate outward in all directions, so the intensity is inversely proportional to distance

$$
I=\frac{p}{4 \pi r^{2}}
$$ squared.

Ex: Increase r by doubling -> I decreases by 4 times -> level decreases by 6 dB .

General topics

- Electrostatics $\} \quad 30 \%$
- Magnetism $3 \quad 30$ \%
- Waves and Optics

$$
40 \%
$$

