Texas A&M University-Corpus Christi
CHEM4402 Biochemistry II Laboratory
Laboratory 10: Protein Structure Determination

Please Bring a laptop computer and USB memory drive to lab

Before we begin the expression and purification of the Green Fluorescent protein let’s take the opportunity to view it’s three-dimensional structure. This will provide an opportunity to examine the relationship between a protein’s structure and function. This can become especially important in situations where a protein is dysfunctional, or when researchers need to design a compound (e.g. a pharmaceutical) that will interact with the protein to alter its function or activity. Such an approach is known as rational drug design.

Three dimensional protein structures are determined either through analyzing the spin of protein atomic nuclei (Nuclear Magnetic Resonance (NMR)) or by crystallizing a protein and analyzing it’s structure using a technique known as X-ray diffraction (figure 1). X-ray diffraction determines the three dimensional position of every single atom in a protein crystal by mapping regions of electron density. These “maps” are then mathematically analyzed to produce a three-dimensional structure. Many of the techniques we have used this semester are employed by crystallographers to make sufficient protein for the formation of crystals. To date, many hundreds of proteins have been crystallized and their three-dimensional structure determined. Most of these structure determinations have been placed in publicly available databanks, such as those found at the National Center for Biotechnology Information.

Figure 1. X-ray crystallographic protein structure determination (Lehninger 2000).

Fortunately for us, the three dimensional structure of Green Fluorescent Protein has been determined. We will examine the structure of GFP using the Protein Explorer web site. This site contains a molecular graphics program capable of interpreting the 3D coordinate files obtained from X-ray diffraction patterns. Protein explorer allows the examination of structural details in a variety of ways, including rotation or enlarging of the structure, identification of regional secondary structure (α-helices, β-strands, etc.), ligands, polar or hydrophobic regions, etc. The program even allows you to “slice through” a structure to view its interior. It also allows you to identify individual amino acids, hydrogen or disulfide bonds. In sum, the program is quite powerful, and enables even a casual observer to obtain a great deal of structural and functional information about a macromolecule.

We will begin today by downloading the protein database file (.pdb) which contains the X-ray crystallography coordinates for green fluorescent protein. We will then explore the features of the protein to answer a series of questions related to it’s structure and function.
Procedure

1. To begin, open your internet browser and go to www.proteinexplorer.org. Select the FirstGlance in Jmol hyperlink. Your browser must have the Java software installed to work.

2. You should arrive at the FirstGlance in Jmol page. Before we can view the structure of GFP we need to load its database (.pdb) file into the website. Enter GFP’s file ID, 1EMB, into the Enter PDB identification code here box and return/enter.

3. After several seconds, the structure of GFP should load in Protein Explorer. There are three components to the webpage: (1) the molecule visualization window on the right-hand side of the page (2) A command block which allows you to manipulate views of your structure at the top left of the page, and (3) an information block at the bottom left of the page which allows you to find out additional information related to your molecule. To increase the speed of protein explorer’s ability to respond to commands, toggle the spin button to stop molecular rotation. If you see other, unconnected molecules in addition to the protein, toggle the water button to remove.

4. One of the first things to learn when viewing 3D structures is how to manipulate them using various mouse/keyboard button combinations. You can rotate your structure by holding down the mouse button (left PC’s) and dragging the structure left/right or up/down. You can zoom in or out of your structure by holding down the shift and mouse buttons (left PC’s) while dragging the mouse back and forth.

5. Look at the different visualization options in the top left portion of your screen (secondary structure, Cartoon, etc.). Press these to see how the image changes. Notice how the information in the bottom left of your screen changes to provide information on the selected view. Use these options in conjunction with the information presented to answer the questions on your worksheet. Play with it a bit. It will take a little practice so please be patient, this is an opportunity to learn how to use an import computer tool.
1. Describe what type of information the following views provide (1 pt each).
 a. Secondary structure
 b. Cartoon
 c. Composition
 d. Hydrophobic/Polar
 e. Charge

2. How many protein chains are there in GFP? (1 pt)

3. What is the predominant secondary structure (2º) of green fluorescent protein? (1 pt)

4. Is the structure of GFP primarily what we would consider parallel or anti-parallel? (1 pt)

5. Is the surface of the GFP protein largely hydrophilic or hydrophobic? Based on these surface characteristics, do you think the protein would be found primarily in the cytosol or in a membrane? Why? (3 pt)

6. The chromophore in GFP is especially interesting. It relies upon the oxidation of part of its own structure and consists entirely of only three amino acids. This is significantly different from other biological reactions which give off light, (e.g. luciferin/luciferase in fireflies and deep sea animals). These reactions rely upon the conversion of a substrate to another product, giving off light in the process. Such reactions are often energetically expensive for the organism, requiring large amounts of ATP. Where is the chromaphore in GFP located? (Hint - use a molecular view allows you to see through the molecule and select the Ligands button) (1 pt)