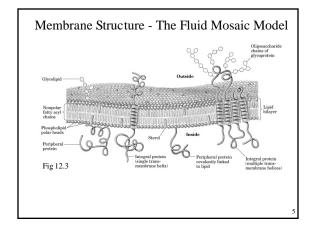
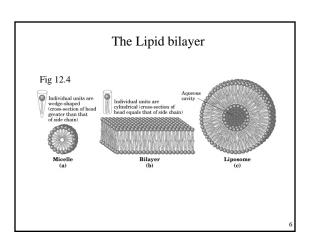
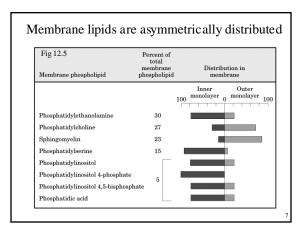
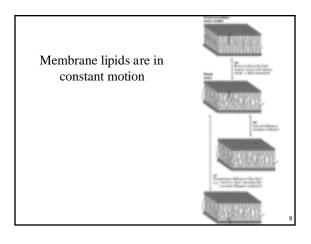

Chapter 12 - Membranes & Transport

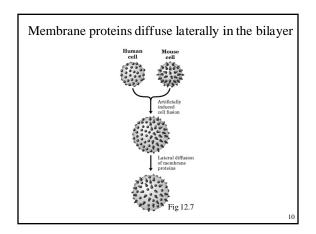

- · Major consituents are lipids & proteins
- Membrane structure best de scribed by "Fluid Mosaic" model
- Membrane proteins are associated with the lipid bilayer in many ways
- · Membrane fluidity is critical for many processes
- Movement of molecules across membranes is restricted
- Transport can be "passive" or "active" (energy-requiring)

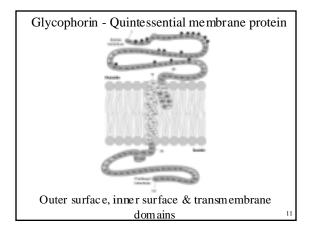

Membranes

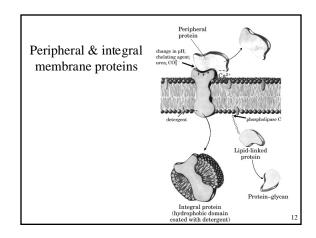

- Define external boundaries
- Regulate "traffic" ac ross bound ary
- Segregate metabolic processes
- Bar movement of polar compounds

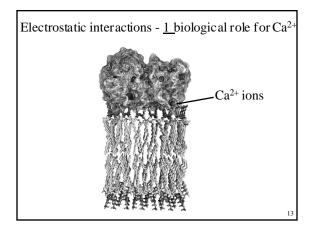


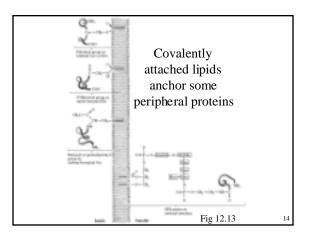
	Co	Membranes in Various Organisms Components (% by weight)			
	Protein	Phospholipid	Sterol	Sterol type	Other lipids
Human myelin sheath	30	30	19	Cholesterol	Galactolipids, plasmalogens
Nouse liver	45	27	25	Cholesterol	_
Maize leaf	47	26	7	Sitosterol	Galactolipids
east	52	7	4	Ergosterol	Triacylglycerols, steryl esters
Paramecium (ciliated protist)	56	40	4	Stigmasterol	_
E. coli	75	25	0	-	-
aries accor	d ing	to spec i	es, ti	ssue and	l membrane

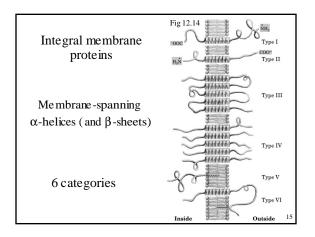


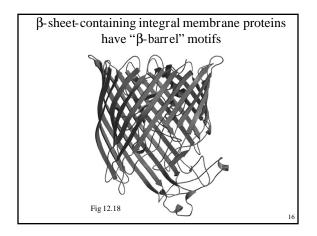


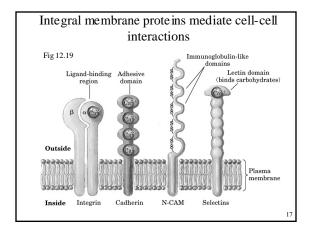


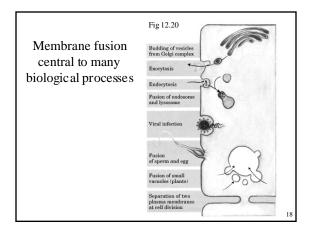


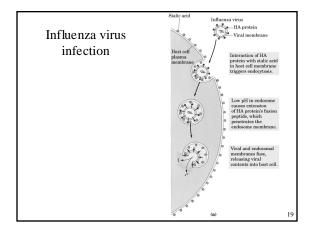

	Fatty Acid Composition of <i>E. coli</i> Cells Cultured at Different Temperatures					
	Percentage of total fatty acids*					
	10 °C	20 °C	30 °C	40 °0		
Myristic acid (14:0)	4	4	4	8		
Palmitic acid (16:0)	18	25	29	48		
Palmitoleic acid (16:1)	26	24	23	9		
Oleic acid (18:1)	38	34	30	12		
Hydroxymyristic acid	13	10	10	8		
Ratio of unsaturated to saturated [†]	2.9	2.0	1.6	0.3		
	2.9 .L. (1962) Ef b/. 84, 1260. not only on gr plus 18:1 di	2.0 fect of temper owth temperat vided by the t	1.6 rature on the ture but on gr	0.3 composi		

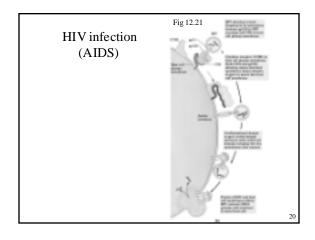


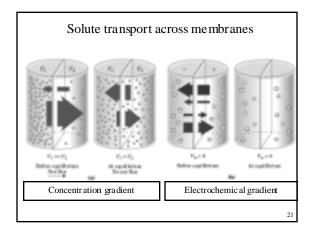


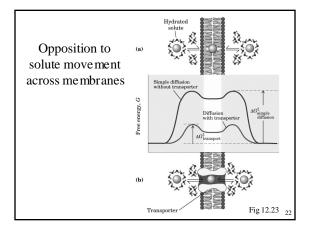


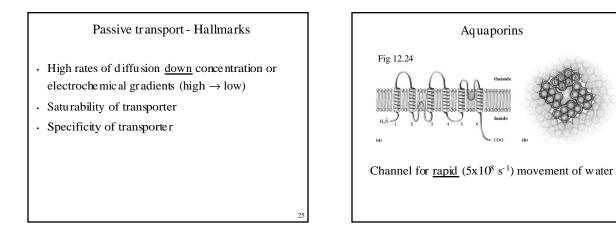


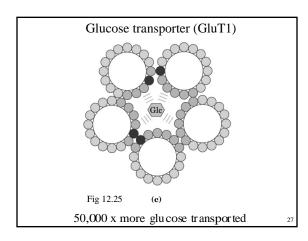


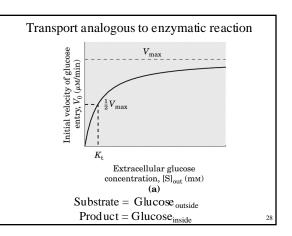


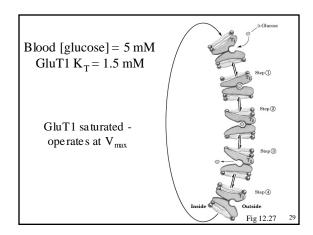


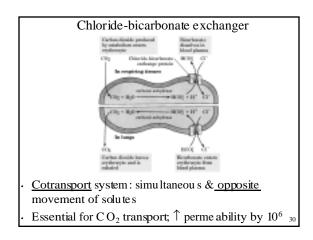


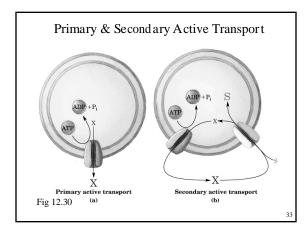



Transmembrane passage of polar compounds

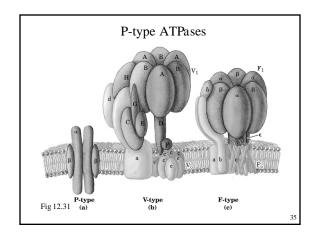

- Integral membrane proteins (transporters)
- · "Passive" or "active" transport
- · Action analogous to enzymes
 - Bind substrates via multiple weak interactions
 - Negative free energy of binding counterbalances positive free energy of H_2O rem oval
 - Span of lipid bilayer by transporter provid es <u>alternative path</u> for substrate movement


3 examples of <u>Passive</u> transport (RBC's)

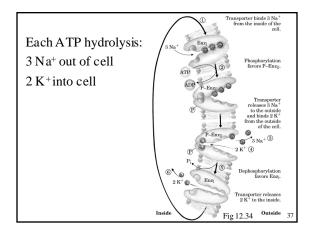

- Aquaporins (H_2O)
- · Glucose Transporter
- Chlorid e-bicarbonate exchanger

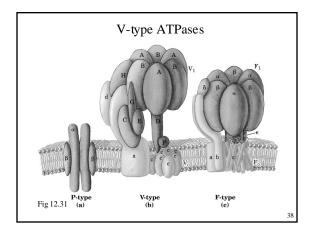


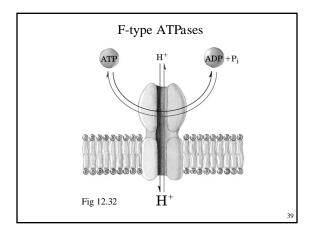
Cotransport systems

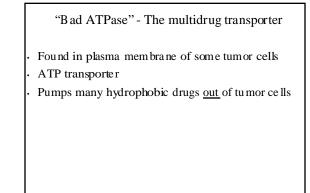

- Antiport (Chloride-bicarbonate exchanger): 2 substrates in <u>opposite</u> direction
- Symport: 2 substrates in <u>same</u> direction
- Uniport (Glucose transporter): one substrate

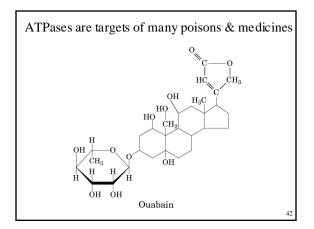
31

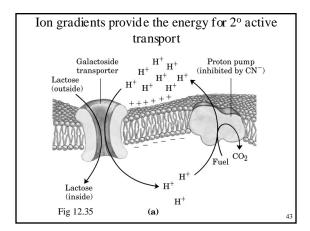

Active transport moves solutes against their concentration or electrochemical gradient

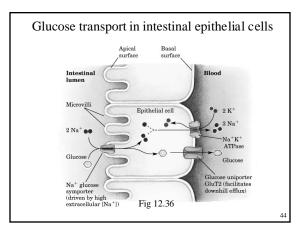


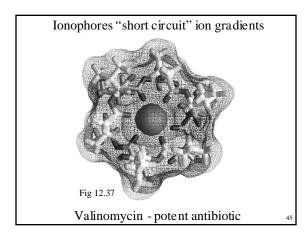

ble 12-4 Four Classes of Transport ATPases							
	Organism or tissue	Type of membrane	Role of ATPase				
P-type ATPases							
Na*K*	Animal tissues	Plasma	Maintains low [Na*], high [K*] inside cell; creates transmembrane electrical potential				
н-к-	Acid-secreting (parietal) cells of mammals	Plasma	Acidifies contents of stomach				
н.	Fungi (Neurospora)	Plasma	Create H1 gradient to drive secondary transport of extracellular solutes into cell				
H+	Higher plants	Plasma J					
Ca ²⁺	Animal tissues	Plasma	Maintains low [Ca2+] in cytosol				
Ca ²⁺	Myocytes of animals	Sarcoplasmic reticulum (endoplasmic reticulum)	Sequesters intracellular Ca ²⁺ , keeping cytosolic [Ca ²⁺] low				
Cd2+, Hg2+, Cu2+	Bacteria	Plasma	Pumps heavy metal ions out of cell				
V-type ATPases							
H+	Animals	Lysosomal, endosomal, secretory vesicles	Create low pH in compartment, activating proteases and other hydrolytic enzymes				
Н'	Higher plants	Vacuolar					
H*	Fungi	Vacuolar					
F-type ATPases							
H'	Eukaryotes	Inner mitochondrial					
H*	Higher plants	Thylakoid	Catalyze formation of ATP from ADP + P,				
H+	Prokaryotes	Plasma					
Multidrug transporter							
	Animal tumor cells	Plasma	Removes a wide variety of hydrophobic natural products and synthetic drugs from cytosol, including vinblastine, doxorubicin, actinomycin D mitomvcin, taxol. colchicine, and puromycin				

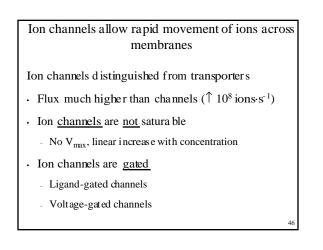


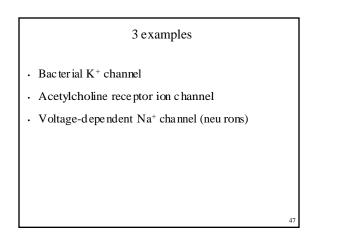


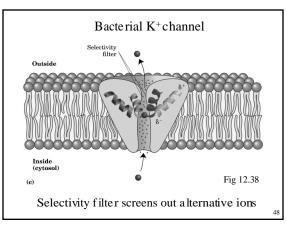

ATP-driven Ca²⁺ pumps (P-type)

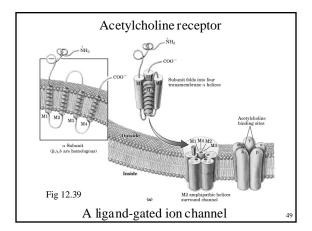

- Ca^{2+} far lower inside vs. outside cells
- + Ca^{2+} form s insoluble c om pounds with phosphate
- + Ca $^{2+}$ pumped out of cells by specific pumps
- Other ATPases (SERCA's) move Ca²⁺ into the ER and sarcoplasmic reticulum (SR) of myocites

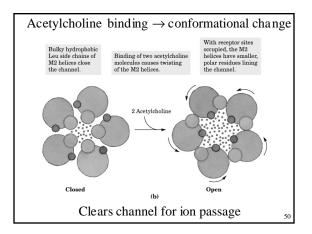

41

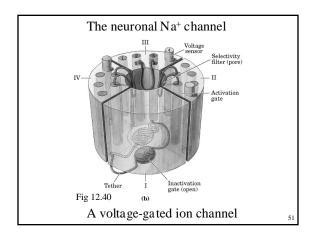

 Similar to Na⁺K⁺ ATPase -cycling between phosphorylated & dephosphorylated forms

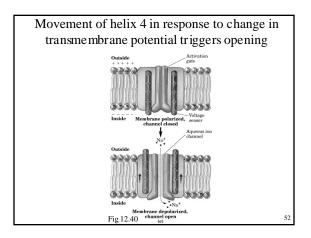


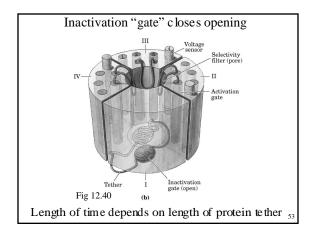


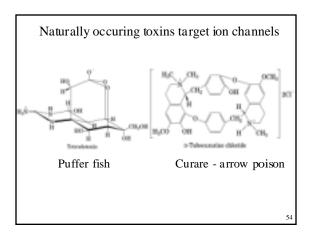


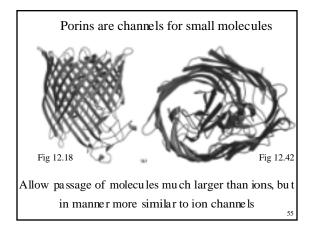


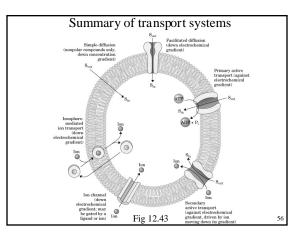












Chapter 12 - Summary

· Biological membranes

- Define cellul ar boundaries
- Divide cells into discrete compartments
- Organize reaction sequences (pathways, etc.)
- Roles in signal reception, transduction

· Membrane composition

- Lipids (phospholipids, sphingolipids, glycolipids)
- Protein (peripheral & integral)
- Varies in composition according to species, cell type, organelle & even "face" of membrane

• Fluid Mosaic Model

- Lipid bilayer
- Fatty acyl chains of phospholipids & sterols oriented towards interior
- Lipids & proteins free to diffuse laterally
- Fluidity affected by temperature, fatty acid composition (saturation) & sterol content
- Cells regulate their lipid composition to reflect changes in their environment

Membrane proteins

- · Peripheral
 - Loose association with membrane
 - Electrostatic int eractions, H-bonds or covalent attach ment to lipids

• Integral

- Firm association with membrane
- Hydrophobic interactions with lipid bilayer
- Both α -helical and β -sheet-type structures

Membranes are structurally & functionally

A symm etr ic

- Two sides differ in lipid/protein composition
- Different functional roles (adhesion, signal reception vs. cytoskeleton attachment, exocytosis, etc.)
- Variety of proteins me diate protein fusion (SNARE's)

Lipid bilayer is impermeable to polar substances

- Exception = water (concentration v. high)
- Other polar molecules cross via transporters or ion channels
- Transporters
- Similar to enzymes show saturation & substrate specificity
- · Passive or Active transport
 - Passive down an electrochemical gradient
 - Active against an electrochemical gradient, requires
 - energy (ATP, oxidation, light, 2º transport)

Transport

- Uniport: single species transport
- Symport: simultaneous transport, same direction
- Antiport: simultaneou s transport, opposite direction

Differences in $[Na^+]$ & $[K^+]$ between inside/outside of

- Cell maintained by <u>active</u> transport via Na⁺K⁺ ATPase
- Resulting gradient used as energy source for 2° transport

- 4 general types of ATPases
- · P-type
 - Reversible phosphorylation
 - Vanadate inhibition $(P_i \text{ an alog})$
 - Ex's: Na+K+ ATPase, SERCA (Ca²⁺transporter)
- · V-type
 - Produce proton g radients across intracellular
- membranes
- F-type
 - Produce proton g radients
 - Reverse reaction (Proton flow) drives ATP synthesis
 - Mitochondria & chloroplast s

Multidrug transporter

- Tumor cells
- Energy of ATP to export hydrophobic drugs
- Ionophores
 - Lipid soluble
 - Bind & transport ions across membranes
 - Short-circuit electrochemical gradients

Ion channels

- Provide hydrophilic pores for movement of <u>specific</u> ions
- Movement down electrochemical gradient
- · Differ from transporters
 - Unsaturable
 - V. high flux rate
- · Gated by ligand binding or voltage potentials
- · K⁺ channel prototype
 - Ion movement restricted by "selectivity filter"
 - Protein domain "gate" ob structs channel when not activated

Porins

63

- Integral membrane β -barrel proteins
- Substrate binding opens pore, allowing movement of molecule to interior