Ch. 6 - Three Dimensional structure of Proteins
Basic Themes & Principles:

(2) Protein conformation (3D structure) is
described by secondary (2°), tertiary (3°) and
guarternary (4°) structure.

- Higher ord er levels deter mined by amino acid
seguence (primary structure (1°))

(2) The function of a protein depends onits
structure .

(6) 3°-global 3D arrangement of polypeptide
chain
. Determined by 1 °
. Stabilized by week, noncov dent interactions

(7) 4° - 3D arrangement of subunitsin multi-

subunit proteins
. Stebilized by wesk, noncov dent interactions

(3) The most important forces stabilizing protein
structureare noncoval ent inter actions

(4) Peptide bonds connect amino acid residues
- N-C bonds have double bord character
- Limits possible no. of conformations

(5) 2°-arrangement of amino acidsin reqular,
recurring patterns.

. a-helix, B-conformati on, B-tum, col legen heli x

Protein conformation - any structural sate achieved
without breaking covalent (peptide) bonds

Fig 6.16

A protein’s conformation isusually the one that is
most stabl e, thermodynamically

Conformation stabilized lar gely by weak
interactions (hydrophobic, H-bonds, ionic, etc.)
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Fig 6.16

Stability = tendency to maintain a native
conformation

Native Proteinsare only marginally stable
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Folded UnFalded
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Folded vs. Unfolded states:
AG = 20-65kJmole

. Recall, H-bonds: 5-20kJmole

. Folded vs. Unfolded states differ by the

equivalent of ~ 3-5 H- bords'!




Polypeptide chains canassume countless different
conformations (Confor mational entropy)
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Conformational entropy and H-bonding with
water drives polypeptidestoward unf dded state

How do proteins maintain a folded state?

H0 __H20

Every H-bonding group within protein wasH-
bonded to water prior to folding

Answer:Look back at H-bonding propertiesof H,O
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- Pure H,O: Network of H-bonded H,O
- No molecule has H,O’ sH-bonding potential

- Solutes (even hydrophilic) disrupt H-bonding
capacity to some extent

- Solvation layers - ordered shells ar ound solutes .

Formation of H-bonds & ionic interactionsdriven
largely by same entropic effect

- Polar groupson protein form H-bondsw/H,O

- Number of H-bonds/unit mass always greater for
pure H,O

. “Structure” introduced (solvation shell, | S)

. Energetic “gain” from formation of w eak,
intramolecular bonds cancelled out by elimination
of such interactionsw /H,0
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Clustering of nonpolar groupsin proteins
decreases solvation layer
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Result: Favorable increasein Entropy (S
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protein folding releases “ structured” H.,O -
provides entropic driving force for folding

Net change in free energy between unfolded and

folded states derived from increased entropy in
surrounding ageuous solution

(elimination of solvation shells)
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Polar or charged groupsin protein interior
must have bonding partners

Typel Type 1

Fig 6.8 bl
Presence of such groupswithout partners too
destahilizing - conformation untenable

- Hydrophobic residues are buried
- H-bonds within proteins are maximized
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Protein structure;

- H-bond formation is cogperative
- Interior H-bonding or ionic groups are paired
with bonding partners
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The Peptide bond
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Covalent bonds forming polypeptide backbone
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The peptide bond has partial double-bond
characteristics

The carbonyl oxygen has a partial negative
charge and the amide nitrogen a partial positive
charge, setting up a small electric dipole.
Virtually all peptide bonds in proteins occur in
this trans configuration; an exception is noted in
Figure 6-8b.
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Fig 6.2 (a)

C-N bond partial double-bond “fixes’ each
peptide group in a planar configuration

T\ Carboxyl
|\ terminus

terminus

—
Fig 6.2 (b)

Limits ability of peptide group to rotate -
limiting possible protein conformations
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Theoretically, N-C, (@) = C,-C (¥) = 180°
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Many values for ¢ and W prohibited by steric
hindrance (R groups peptide backbone)

Fig 6.2




Ramachandran plot - permissible bond angles
for N-C,, C,-C bonds

Dark Blue - fully alowed
Med. Blue - unfavarable

Lt Blue- unlikely |

a-helix: simpleg
arrangement for rigid
peptide bonds

. Backbone wrapped around an imaginary axis
- Amino &id side chains projed out

- Repeating unit = 1 turn (360°) of helix

. 1ltumextends 5.4 angstroms dong axis

. 3.6residues/turn

Carboxyl terminus

. Hélicd twist is*“right-handed” Fig6.6
. 1/4 of al amino acid residuesin a-helices
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aa sequence affectsa-helix stability

Interaction between aa sde chainscan
stabilize or destabilize helix structure
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Protein 2° - local conformation within polypeptide
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Fig 6.16 -
Common patterns: i) a-helix,

ii) B-conformations
(sheet, turn)
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a-helices make optimal use of H-bonds

H-bonds between every 4 th amino acid residue

Each turn of the helix is siabilized by 3-4 H -bonds
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. Blocksof (+) or (-) charges (repulsion)

. Large, bulky side chainsin near proximity

. Condraint of Proor Gly residues

Dedabilizing forces

- Glu, Lys, Arg, etc. side chains

- A, Ser, Thr,Leu

- Nin prdine ring rigd, no H-bond, makes kinks
- Gly - small, takes up unique confarmation
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Stabilizing Forces for a-helices

- (+/-) ionic interactions 3-4 residuesapart
- Ex Asp (-)/Lys (+)

- Hydrophobic interactions 3-4 residues apart
- Ex: Phel/ Trp

. Interactions of aa’s near terminal ends of helix

Amino terminus.

_ &

a- helices exhibit polarity
- Electric d polesi neach peptidebond

. Connetted via H-bonding
- Net dipd eextends down hdix

. 400 snex temind endsdan’t fully
partidpatein H-bonding

. Credespatid (+) and (-) charge &
N- and Ctermina ends d helix

. (4? or ﬁ-) sidechains rear ends bond
w/d polés andstabiliz helix

Carboxyl terminus

[3- conf ormation organi zes pol peptide
chainsinto sheets

(a) Antiparallel
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Top view

B-sheets

. Backbore in “zig-zag’ vs. helical structure

. Zig-zag chairs arranged side by sde (sheetg
- H-bonds form between aj acent chans
- R-groups protrudefrom sheets in opposite diredions

. Chairscan be parallel or anti-parallel
- Sameor opposite N- and C- termini

. Favors small sdechairs

(a) F.6-16a

Polpeptide chains must often reverse directi on |

B-turns
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2° has characteristic bond anglesand oo content If bond angles are allowed foragivenaa,
/§y it can be found insuch 2°
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Some aa’s are found more frequently in
specific types of 2°

« Helix B Conformation B Turn

Glu ]
Met |
Ala I

Tertiary (3°) & Quarternary (4°) Structure

e

]
Ex: Pro & Gly (B-turng, Glu & Met (a-helices) N

Tertiary (3°) Structure Quarternary (4°) Structure

. 3D arrangement of all atomsin aprotein
- Includes]ong range agpectsof aa sequence

- Interactions betw een atoms in different sections
of 2°
. Segments of polypeptide chainsheld in 3°
position by weak bonding interactions and
covalent disulfide bonds (-S S)

e Fig 6-2

Arrangement of separate polypeptide subunitsin
x5 multisubunit proteins al




2 major protein groups: Fibrous & Globular

FibrousProteins.  “Srands’ or“ Sheets’
Globular Proteins:  Compact, spherical

Structurally distinct:
- Fibrous: 1 type of 2°
- Globular: Several types of 2°

Fuctionally distinct:
- Fibrous: Support, shape, external protection
- Globular: enzymes, regulatory proteins
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Fibrous Proteins

- High conc. of hydrophobic residues (F, W, 1)
. Insoluble in Water

. Often asxociate to form supramol ecular

complexes (hair, woal, etc.)

Fibrous proteins: o -Keratin
. Hair, wooal, nails horns, hooves, etc.
- Evolved for tensile strength

. Structure: right-handed o -helix

. a-helicesform coiled coils
- Supertwisting amplifies grength (“ rope”)

. Surfaces where 2 helicescoil made up of
hydrophobic residues - interlocking pattern

. Cailed cails enhanced by covalent X -links
- Disulfide bords, nongandard o a’'s
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FibrousProteins:  Collagen

. Function = Tendle strength (> steel wirel)
. Terdons, cartilage, cornea
. Unique2°: Collagen helix

- Left-handed a-helix
-3vs. 36aa’'s/turn
- Coiled cailsfrom 3 supertw isted chains

. Unique aa composition

- High levelsof Gly, Ala, Pro

. Chains X-linked by covalent bonds (His, Lys)

Globular Proteins
. Variety of 2°

- Combiration of a-helices, B-helicesand turns

. Polypeptide chainsfold back on each other
- Provides structurd diversity
- Hydrophobic residues buried
- Hydrophilic residues exposed or paired

- Include enzymes, transport proteins regulatory
proteins, immunoglobulins, etc.
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Protein interiorsare densely packed

liquid packing density 04 - 0.6
Crystals 07-0.8
Proteins ~0.75

Tight packing reinforces weak interactions

van der Waals forcesbecome significant
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Small proteinshave lower
surface:volume ratios -
fewer buried residues

Often stabilized by covalent
bonds: disulfides(-S-S),
linksto prosthetic groups

Fig6.18 Ribonuclease
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Supersecondary Structure & Domains

An intermediate stage of structure (*matifs’,
“folds’,

“Supersecondary structure”’) are stable arrangements
of 2° and their c onnections v, 3

Examples: 3-a-3 loops
O-0 corner
o/ Barrel

Large proteins(several hundred residues of ten
fold into two or more stable, globular domains

Domains of ten have diginct functions:
. Catalyss
- Regulation of Catalytic activity
- Binding of ligands 5

2°and Supersecondary Structure Folding Rules :

- Burial of hydrophobic R groupsto exclude H,O
- 2layersof 2°

. a-helicesand B-sheetsgenerally found in
different layers (H-bonding problems)

- Protein segment adjacent in 1° usually stacked
together infolded structure

. Connections b/w segments of 2° can't crossor
form knots

. B-conformation most stable when twisted
dlightly in right-hand sense

Protein Families: Proteins with significant
1°, structural or functional similarity

Usually indicates astrong
evolutionary relationship

Quarternary (4°) Structure

“Multimers’ (> 2 subunits) Advartages:
. Binding eff ects - sum greater than parts
- Synergism b/w subunits (Hemoglohin)
- Functional differences among subunits
- Catalytic vs. Regulatory roles
. Structural enhancement
- Coiled cails, etc. - increase tendle strength
. Multi-gep catalyticreactions
- “Assembly line biosyrthesis’ (Fatty acids)




Most multimers haveidentical subunits, or
repeating groups of nonidentical subunits

Repeating unit (single or group) = Protomer

Rotational & Helical Symmetry

Subunitscan be superimposed by
rotation about 1 or moreaxes

Twn vypees of evelie sy mmery
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Multimer example = Hemoglobin

. 4 protein subunits: 2a chains, 2 3 chains
. 4Heme groups
. Structural subunit: aff protomer
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Rotational & helical symmetry
. Cyclic symmetry: single axis
- C,; n= no. subunits
- Dihedra symmetry: 3D symmetry (X,y,z axes)

- Helical symmetry: symmetry about axis
- Viral capsds B

51
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Limits to Protein Size

- Genetic coding capacity

- Use of many smaller polypegtidesvs. 1 ggartic
pratein conserves genomic space (ex: viruses)

. Accuracy of Protein Biosynthesis
- Error frequency = 1 mistake/10,000 resdues
- Implications for protein stability, catalyss, etc.

- Probability of introd ucing errors incr eases with
size

Protein Folding & Denaturation

Polypeptides must fold during and after
synthesisto native conformation

(difference = 3-4 H bonds)

-L oss of native conformation (denatur ation) = loss of
function
. Does nat require complete unfolding
- Unfolding induced w/mild treatment
-pH, heat, organic solv ents, &c.




Folding likey a cooperative process
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Formation of 2° in one part
enhances formation in another

25

. . "
Amino Acid sequence c W
(10) determl n$3 ° ‘ catalytically active.
ad of

Classc example:
Denaturation &
Refdding of ribonuclease

Conclusion: Folding not a

C=

s B 55 65 Native,

trial and error process ‘ pe ity
‘ Disulfide cross-links

correctly re-formed.

Models for protein folding:
(1) Cooperative folding
1° - local 2° - super2° - 3°

(2) Molten Globule:
Hydrophobic “ Collapse” followed by
interaction among non-polar residues

Actual process probably incorporates
features of both models
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The Fading Processas a Free Erergy Funnel

i
High conformationd —> i1 L
entropy j
Iyery
Fully folded, '

native structure —» .

Partially folded states are energetically favorable

and promote advancement tofully folded state ol

Some Proteins Undergo Assiged Folding

Assisted by theaction of specialized proteins:
. Molecular Chaperones
. Chaperonins
- |somerase enzymes
- Rearrangement o disulfide bonds

Chaperones & Chaperonins bind to unfolded
regions and prevent inappropriate aggr egation

BN

Fig6.30
60
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Chapter 6 - Summary

1) Protein structure is stabilized by multiple weak
interactions
- Hydrophobic interactians major contributions
- H-bonds & ionic inter actions gptimized in most
stable structure

- Dense packing in protein interior allows for
significant van der Waals interactions
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Summary (contd.)

2) Natureof peptide bond places constraints on
structure
- Exhibits partial double-bond characterigics
- Keeps peptide group in rigid planar config
- Rotation abaut N-C,, C,-C specified by ® & W
- 2° defined completely if all ® and W knowvn
(Ramachandran plas)
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Summary (contd.)

3) 3major types of 2°:

- a-helix

- [B-conformation (sheets)
- B-turns

a-helix and 3-confor mation characterized by
optimal H-bonding b/w peptide bondsin
protein backbone

Summary (contd.)
7) 2 general classesof proteins:
- Fibrous
- Primarily gructural raes (skin, hair, rails, etc.)
- Single type of 2° predominates
- Often combine to form superstructures
. Globular:
- Enzymes, trangporters regulatory prateing etc.
- Several typesof 2°

- Often multimers arranged as symmetric
assaeiations of subunits
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Summary (contd.)

4) Stable segments of 2° are variably called
supersecondary gructure motifs or folds

5) 3°, thecomplete 3D structure of a polypepide
chain, is the association of secondary structure

6) In very large proteins stable and independ-
ently folding regions are called domains

_ Often have discrete functions (catalysis, regulatary)
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Summary (contd.)
8) Quarternary gructure (4°):
- Interactions biw subunits of multimeric proteins

- Condst o units of groups of different subunits
(protomers)

- Protamers usually related by rotational or
helical symmetry

9) Amino Acid Sequence determines 3°

- Proteinsfold (probably) in a series of steps
along an ener getically favorable pathw ay
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Summary (contd.)

. Proteinfolding is cooperative folding within
localized regionspromotesfolding in other
areas

. Amino Acid sequence provides sufficient
information for most proteinsto fold correctly,
including placement of disulfide bonds

- Folding is assisted for some proteins by other
proteins. molecular chaperones, chaperonins
and isomerases (disulfide bond placement)
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