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Ch. 6 - Three Dimensional structure of Proteins

Basic Themes & Principles:

(1) Protein conformation (3D structure) is
described by secondary (2°), tertiary (3°) and
quarternary (4°) structure.

– Higher ord er levels de termined by amino acid
sequence (primary structure (1°))

(2) The function of a protein depends on its
structure
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(3)  The most important forces stabilizing protein
structure are noncovalent interactions

(4) Peptide bonds connect amino acid residues

– N-C bonds have double bond chara cte r

– Limits possible no. of conformations

(5)  2°- arrangement of amino acids in regular,
recurring  patterns.

• α-helix, β-conformati on, β-tu rn, col lagen heli x
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(6)  3° - global 3D arrangement of polypeptide
chain

• Determ ined by 1 °
• Stab ilized by weak, noncovalent interactions

(7)  4 ° - 3D arrangement of subunits in multi-
subunit proteins

• Stab ilized by weak, noncovalent interactions
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Protein conformation - any structural state achieved
without breaking covalent (peptide) bonds

A protein’s conformation is usually the one that is
most stable, thermodynamically

Fig 6.16
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Conformation stabilized largely by weak
interactions (hydrophobic, H-bonds, ionic, etc.)

Stability = tendency to maintain a native
conformation

Fig 6.16
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Native Proteins are only marginally stable

   Folded vs. Unfolded states:

• G = 20 - 65 kJ/mole

• Recall, H-bonds: 5-20 kJ/mole

• Folded vs. Unfolded states differ by the
equivalent of ~ 3-5 H- bonds !



2

7

Polypeptide chains can assume countless different
conformations (Conformational entropy)

Conformational entropy and H-bonding with
water drives polypeptides toward unfolded state
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How do proteins maintain a folded state?

Every H-bonding group within protein was H-
bonded to water prior to folding
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Answer:Look back at H-bonding properties of H2O

• Pure H2O:  Network of H-bonded H2O

• No molecule has H2O’s H-bonding potential

– Solutes (even hydrophilic) disrupt H-bonding
capacity to some extent

– Solvation layers - ordered shells ar ound solutes

↓S, ↑G
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Clustering of nonpolar groups in proteins
decreases solvation layer

Result: Favorable increase in Entropy (S)
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Formation of H-bonds & ionic interactions driven
largely by same entropic effec t

• Polar groups on protein form H-bonds w/H2O
– Number of H-bonds/unit mass always greater for

pure H2O

• “Structure” introduced (solvation shell, ↓ S)

• Energe tic “gain” from formation of w eak,
intramolecular bonds cancelled out by elimination
of suc h interactions w /H2O
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protein folding releases “structured” H2O -
provides entropic driving force  for folding

Net change in free energy between unfolded and
folded states derived from increased entropy in

surrounding aqeuous solution

(elimination of solvation shells)
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Polar or charged groups in protein interior
must have bonding partners

Presence of such groups without partners too
destabilizing - conformation untenable

Fig 6.8
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Protein structure:

• Hydrophobic residues are buried

• H-bonds within proteins are maximized

– H-bond formation is coopera tive

• Interior H-bonding or ionic groups are paired

with bonding partners

Fig 6.16
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The Peptide bond

Covalent bonds forming polypeptide backbone
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The peptide bond has partial double-bond
characteristics

Fig 6.2
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C-N bond partial double-bond “f ixes” each
peptide group in a planar configuration

Limits ability of peptide group to rotate -
limiting possible protein conformations

Fig 6.2
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Theoretically, N-Cα  (φ) = Cα-C (Ψ) = 180°

Many values for φ and Ψ prohibited by steric
hindrance (R groups, peptide backbone)

Fig 6.2
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Ramachandran plot - permissible bond angles
for N-Cα, Cα-C bonds

Dark Blu e - fully allow ed
Med. Blue - unfavorable

Lt. Blu e - unlikely 20

Protein 2° - local conformation within polypeptide

Common patterns:  i) α-helix,

     ii)  β-conformations

(sheet, turn)

Fig 6.16
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α-helix: simplest
arrangement for rigid
peptide bonds

• Backbone wrapped around an imaginary axis

• Amino acid side chains project out

• Repeating unit = 1 turn (360°) of helix

• 1 turn extends 5.4 angstroms along ax is

• 3.6 residues/t urn
• Helical twist is “right-handed”

• 1/4 of all amino acid residues in α-helices

Fig 6.6
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α-helices make optimal use of H-bonds

H-bonds between every 4 th amino acid residue
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Each tur n of the helix is stabilized by 3-4 H -bonds
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Interac tion between αα side chains can
stabilize or destabilize helix structure

αα sequence affects α-helix stability
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Destabilizing forces

• Blocks of (+) or (-) charges (repulsion)

– Glu, Lys, Arg, etc. side chains

• Large, bulky side chains in near proximity

– Asn, Ser, Thr , Leu

• Constraint of Pro or Gly residues
– N in proline ring rigid , no H -bond, makes kinks

– Gly - small, takes up unique conformation
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Stabilizing Forces for α-helices

• (+/-) ionic interactions 3-4 residues apart

– Ex: Asp (-)/Lys (+)

• Hydrophobic interactions 3-4 residues apart

– Ex:  Phe/ Trp

• Interac tions of αα’s near terminal ends of helix

26

α-helices exhibit polarity

• Electric dipoles in each peptide bond

• Connected via H-bonding

• Net dipole extends down helix

• 4 αα’s near terminal ends don’t fully
participate in H-bonding

• Creates part ial (+) and (-) charge at
N- and C-terminal ends of helix

• (+) or (-) side chains near ends bond
w/dipoles and stabilize helix
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β-conformation organizes polpeptide
chains into sheets
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β-sheets

• Backbone in “zig-zag” vs. helical structure

• zig-zag chains ar ranged side by side (sheets)
– H-bonds form between adjacent chains

– R-groups pro trude from s heets in opposite directions

• Chains c an be paralle l or anti-parallel
– Same or oppo site N- and C- termini

• Favors small side chains
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β-turns

Polpeptide chains must often reverse direction

F.6-16a
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Fig . 6-8a

β-turns

• Link suc cessive ru ns of α-
helix or β- sheet

• 180 ° turns

• Consist of 4 α α residues
– Frequently Gly or Pro

– Small and Flexible

• Often near protein sur face

• Form “intra-turn” H-
bonds plus H-bond
w/solvent
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2° has characteristic bond angles and αα content

α-helices and β-sheets can be descr ibed
by φ  and Ψ at each residue

Fig 6-9a
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If bond angles are a llowed for a given αα,
it can be found in such 2°

Ex: φ  and Ψ for the αα’s in pyruvate kinase
Fig. 6-9b
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Some αα’s are found more frequently in
specific types of 2°

Ex: Pro & Gly (β-turns), Glu & Met (α-helices)
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Tertiary (3°) & Quarternary (4°) Structure

Fig 6-16a 6-23b
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Tertiary (3°) Structure

• 3D arrangement of all atoms in a protein

• Includes long range aspects of αα sequence

– Interactions between atoms in different sections

of 2  °

• Segments of polypeptide chains held in 3°
position by weak bonding interactions and

covalent disulfide bonds (-S-S-)
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Quarternary (4°) Structure

Arrangement of separate polypeptide subunits in
multisubunit proteins

Fig 6-23
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2 major protein groups: Fibrous & Globular

Fibrous Proteins: “Strands” or “Sheets”
Globular Proteins: Compact, spherical

Structurally distinct:
– Fibrous: 1 type of 2°
– Globular: Several types of 2°

Fuctionally distinct:
– Fibrous: Support, shape, externa l protection

– Globular: enzymes, regulatory proteins
38

Fibrous Proteins

• High conc. of hydrophobic residues (F, W, I)

• Insoluble in Water

• Often associate to form supramolecular
complexes (hair, wool, etc.)
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Fibrous proteins: α-Keratin
• Hair, wool, nails, horns, hooves, etc.

– Evolved for tensile strength

• Structure: right-handed α-helix

• α-helices form coiled coils
– Supertwisting amplifies strength (“ rope”)

• Surfaces where 2 helices coil made up of
hydrophobic residues - interlocking pattern

• Coiled coils enhanced by covalent X-links
– Disulfide bonds, non-standa rd α α’s
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Fibrous Proteins: Collagen

• Function = Tensile strength (> steel wire!)

• Tendons, cartilage, cornea

• Unique 2°: Collagen helix

– Left-handed α-helix

– 3 vs. 3.6 α α’s / tu rn

– Coiled coils f rom 3 supertw isted chains

• Unique αα composition

– High levels of Gly , Ala, Pro

• Chains X-linked by covalent bonds (His, Lys)
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Globular Proteins
• Variety of 2°

– Combination of  α-helices, β-helices a nd turns

• Polypeptide chains fold back on each other

– Provides structural diversity

– Hydrophobic residues buried

– Hydrophilic residues exposed or paired

• Include enzymes, transport proteins, regulatory
proteins, immunoglobulins, etc.
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Protein interiors are densely packed

liquid packing density 0.4 - 0.6
Crystals       0.7-0.8
Proteins ~0.75

Tight packing reinforces weak interactions

van der Waals forces become significant
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Small proteins have lower
surface:volume ratios -
fewer buried residues

Often stabilized by covalent
bonds: disulfides (-S-S-),
links to prosthetic groups

Fig 6.18
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Supersecondary Structure & Domains

Examples: β-α-β loops
α-α corner
α/β Barrel

An intermed iate stage of structure (“motif s”,
“folds”,
“Supersecondary stru cture”) are stable arrangeme nts
of 2° and their c onnections
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Large proteins (several hundred residues) often
fold into two or more stable, globular domains

Domains often have distinct functions:

• Catalysis

• Regulation of Catalytic activity

• Binding of ligands 46

2°and Supersecondary Structure Folding Rules :

• Burial of hydrophobic R groups to exclude H2O
– 2 layers of 2°

• α-helices and β-sheets generally found in
different layers (H-bonding problems)

• Protein segment adjacent in 1° usually stacked
together in folded structure

• Connections b/w segments of 2° can’t cross or
form knots

•  β-conformation most stable when twisted
slightly in right-hand sense
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Protein Families:  Proteins with significant
1°, structural or functional similarity

Usually indicates a strong
evolutionary relationship
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Quarternary (4°) Structure

“Multimers” ( > 2 subunits)  Advantages:

• Binding effects - sum greater than parts

– Synergism b/w subunits (Hemoglobin)

• Functional differences among subunits

– Catalytic vs . Regulatory roles

• Structural enhancement
– Coiled coils, etc.  - increase tensile strength

• Multi-step catalytic reactions
– “Assembly line biosynthesis” ( Fatty acid s) �
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Most multimers have identical subunits, or
repeating groups of nonidentical subunits

Repeating unit (single or group) = Protomer
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Multimer example = Hemoglobin

• 4 protein subunits: 2 α chains, 2 β chains

• 4 Heme groups

• Structural subunit: αβ protomer
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Rotational & Helical Symmetry

Subunits can be superimposed by
rotation about 1 or more axes
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Rotational & helical symmetry

• Cyclic symmetry: single axis

– Cn; n = no. subunits

• Dihedral symmetry: 3D symmetry (x,y,z axes)

• Helical symmetry: symmetry about axis
– Vira l capsids

Fig 6.25b
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Limits to Protein Size

• Genetic coding capacity

– Use of ma ny smaller polypeptide s vs. 1 gigantic
protein conserves genomic space (ex: viruses)

• Accuracy of Protein Biosynthesis
– Error frequency = 1 mistake/10,000 residues

– Implica tions for protein stability, ca talysis, e tc.

– Probability of introd ucing errors increases with
size
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Protein Folding & Denaturation

Polypeptides must fold dur ing and after
synthesis to native conformation

( difference = 3-4 H bonds)

•Loss of native c onformation (denatur ation) = loss of
func tion
• Does not re quire complete  unfolding
• Unfolding indu ced w/mild treatment

– pH, h eat, organic solv ents, etc.
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Folding likey a cooperative process

Formation of 2° in one part
enhances formation in another

Fig 6.28
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Amino Acid sequence
(1°) determines 3 °

Classic e xample:
Denaturation &
Refold ing of ribonuc lease

Conclusion: Folding not a
“tria l and error” process
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 Models for protein folding:
(1) Cooperative folding
1° → local 2° → super 2° → 3 °

(2) Molten Globule:
Hydrophobic “Collapse” followed by
interaction among non-polar residues

Actual process probably incorporates
features of both models
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The Folding Process as a Free Energy Funnel

Partially folded states are energetically favorable,
and promote advancement to fully folded state

High conformatio nal
entropy

Fully folded, 
native st ructure
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Some Proteins Undergo Assisted Folding

Assisted by the action of specialized prote ins:

• Molecular Chaperones

• Chaperonins

• Isomerase enzymes

– Rearrangement of disulfide bonds

60

Chaperones & Chaperonins bind to unfolded
regions and prevent inappropriate aggregation

Fig 6.30
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Chapter 6 - Summary

1) Protein structure is stabilized by multiple weak
interactions

– Hydrophobic interactions major contributions

– H-bonds & ionic interactions optimized in most
stable structure

– Dense packing in protein inter ior a llows for
significant van der Waals interac tions
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Summary (contd .)

2) Nature of peptide bond places constraints on
structure

– Exhibits par tial d ouble-bond characteristics

– Keeps peptide group in rigid planar config.

– Rotation about N-Cα, Cα-C specified by Φ  & Ψ
– 2° defined complete ly if a ll Φ and Ψ  known

(Ramachandran plots)
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Summary (contd .)

3) 3 major types of 2°:

• α-helix

• β-conformation (sheets)

• β-turns

α-helix and β-conformation characterized by
optimal H-bonding b/w peptide bonds in
protein backbone
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Summary (contd .)

4) Stable segments of 2° are var iably called
supersecondary structure, motifs or folds

5) 3°, the complete 3D structure of a polypeptide
chain, is the association of secondary structure

6) In very large proteins, stable and independ-
ently folding regions are called domains

– Often have discrete functions (catalysis, regulatory)
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Summary (contd .)

7) 2 general classes of proteins:

• Fibrous:

– Primarily structura l roles (skin, hair, na ils, etc.)

– Single type of 2° predominates

– Often combine to form superstructures

• Globular:
– Enzymes, transporte rs, regu la tory proteins, etc.

– Severa l types of 2°
– Often multimers arranged as symme tric

associations of subunits
66

Summary (contd .)

8) Quarternary structure (4°):

– Interactions b/w subunits of multimeric prote ins

– Consist of units of grou ps of different subunits
(protomers)

– Protomers usually re lated by rota tional or
helical symmetry

9) Amino Acid Sequence determines 3°
– Proteins fold (probably) in a ser ies of steps,

along an energetically favorable pathway
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Summary (contd .)
• Protein folding is cooperative; folding within

localized regions promotes folding in other
areas

• Amino Acid sequence provides sufficient
information for most proteins to fold correctly,
including placement of disulfide bonds

• Folding is assisted for some proteins by other
proteins: molecular chaperones, chaperonins
and isomerases (disulfide bond placement)


