Chapter 8 - Enzymes

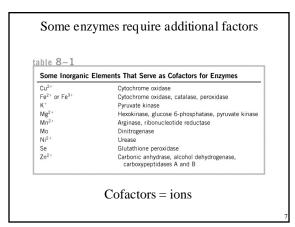
- · Enzymes are biological c atalysts
 - Most are proteins (Ribozymes = RNA catalysts)
 - May have mult iple subunits
 - Often require additional components for activity (cofactors, coenzymes)
- · Enzymes bind the substrate within an active site
 - Forms the Enzyme-subst rate (ES) complex
 - Transition from reactant to product limited by energy barrier

- Enzymes increase reaction rates by <u>lower ing</u> activation e nergy barriers
 - <u>Binding energy</u>, derived from numerous weak interactions between enzyme & substrate
- <u>Binding energy</u> allows an enzyme to discriminate between substrate & competing molecules
- Reaction equilibrium dependent on the <u>difference</u> in <u>free energy</u> of ground states of reactants/products
 - Equilibrium position <u>not</u> influenced by enzyme

 K_{cat} = turnov er no. = num ber of subs trate molecules converted to product when enzyme at V_{max}

- K_m , V_{max} and k_{cat}/K_m all use ful parameters for <u>comparing</u> enzyme activites
- Enzyme activity can be altered:
 - pH, temp erature
 - Reversible inh ibitors (comp etitive, uncompetitive, mixed)
 - Irreversible inhibitors ("suicide" substrates)
- · Certain enzymes used to illustrate key concepts
 - Chymotryps in transition state stabilization
 - Hexokinase induced fit
 - Enolase metal io n catalysi s

- Regulatory enzymes control <u>overall</u> rates of metabolic <u>pathways</u>
 - 2 major <u>activation</u> or <u>inhibition</u> mechanisms
 - (1) Reversible, noncovalent al losteric interactions
 - (2) Reversible, covalent modifications (phosphorylation)
 - Irreversible activation also occurs (proteolytic cleavage)


Enzymes

Biological Catalysts

- Can increase reactions rates by 1.0^5 to 10^{17} X
- Often greater than synthetic or in organic catalysts
- High specificity for substrate
- Function under very mild conditions

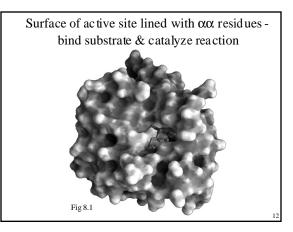
Much of the history of biochemistry is the study of enzymes

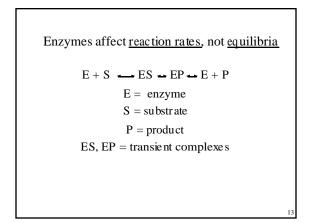
- Digestion of meat by stomach secretions (1700's)
- Conversion of starch to sugar (1800's)
- Conversion of sugar to alcohol (1800's)

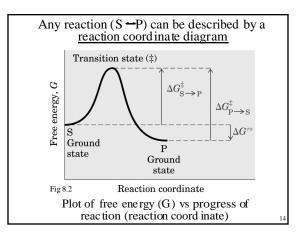
Some Coenzymes That Se or Functional Groups*	erve as Transient Carrie	rs of Specific Atoms
Coenzyme	Examples of chemical groups transferred	Dietary precursor in mammals
Biocytin	CO2	Biotin
Coenzyme A	Acyl groups	Pantothenic acid and other compounds
5'-Deoxyadenosylcobalamin (coenzyme B ₁₂)	H atoms and alkyl groups	Vitamin B ₁₂
lavin adenine dinucleotide	Electrons	Riboflavin (vitamin B2
Lipoate	Electrons and acyl groups	Not required in diet
Nicotinamide adenine dinucleotide	Hydride ion (:H-)	Nicotinic acid (niacin)
Pyridoxal phosphate	Amino groups	Pyridoxine (vitamin B ₆
Tetrahydrofolate	One-carbon groups	Folate
Thiamine pyrophosphate	Aldehydes	Thiamine (vitamin B ₁)

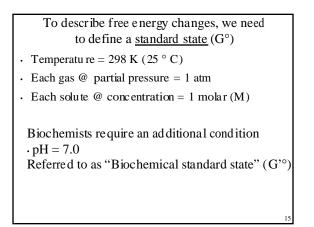
Some enzymes require both a cofactor & coenzyme

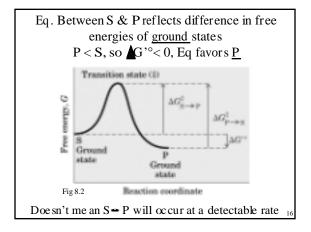
Complete, catalytically active enzymes & cofactor/coenzyme = "holoenzyme"

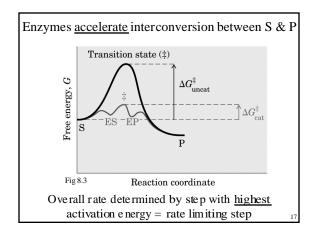

<u>Protein</u> part of su ch enzymes = "apoenzyme" or "apoprotein"

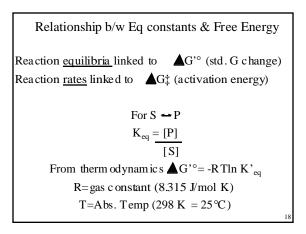

No.	Class	Type of reaction catalyzed	
1	Oxidoreductases	Transfer of electrons (hydride ions or H atoms)	
2	Transferases	Group-transfer reactions	
3	Hydrolases	Hydrolysis reactions (transfer of functional groups to water)	
4	Lyases	Addition of groups to double bonds, or formation of double bonds by removal of groups	
5	Isomerases	Transfer of groups within molecules to yield isomeric forms	
6	Ligases	Formation of C—C, C—S, C—O, and C—N bonds by condensation reactions coupled to ATP cleavage	

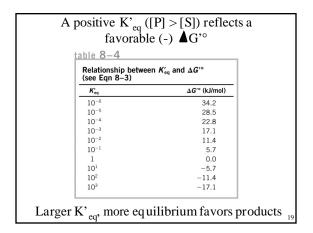

How enzymes work

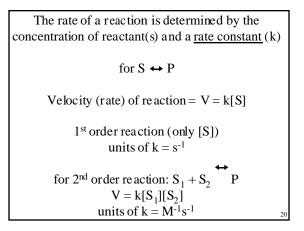

Under biological conditions (37°C, pH 7.0) <u>uncatalyzed</u> reactions tend to be <u>slow</u>

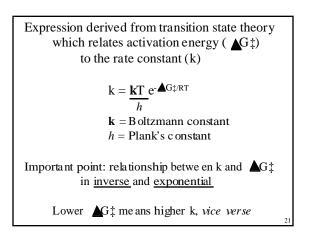

Enzymes circumvent these problems by providing an environment which makes the reaction more favorable - the active site

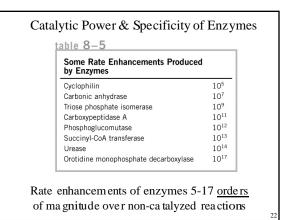


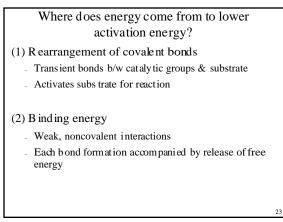


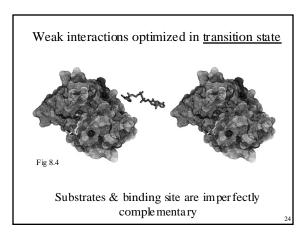


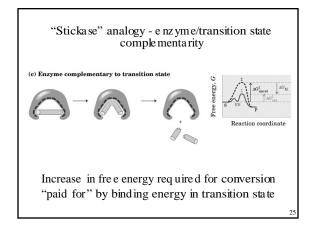


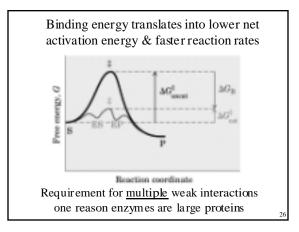


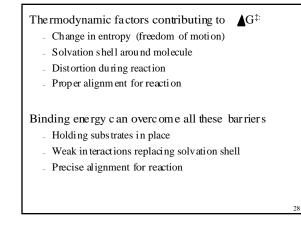


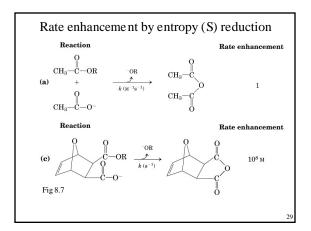


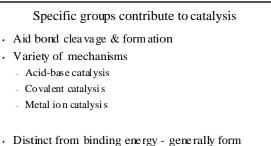




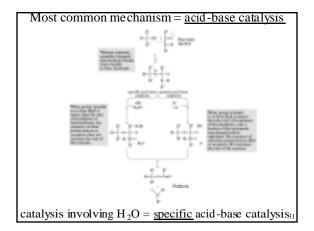


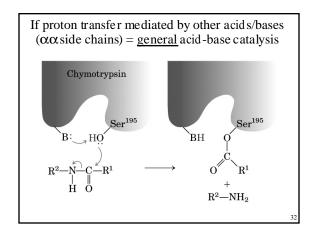


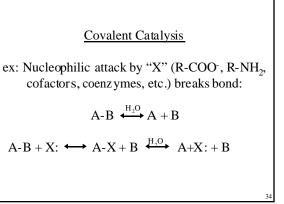




Binding energy contributes to reaction specificity & catalysis
▲G[‡] needs to be lowered ~ 5.7 kJ/mol to acce lerate a rxn 10-fold
Energy a vailable from the formation of a <u>weak</u> bond ~ 4-30 kJ/mol

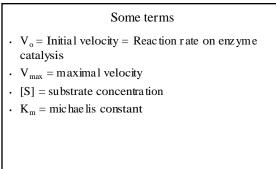

• <u>Multiple</u> interactions may lower activation energies by <u>60-100</u> kJ/mol



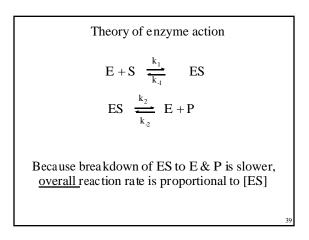


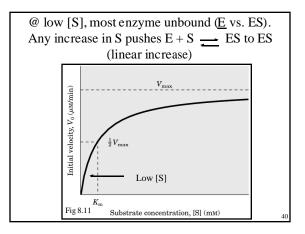
• Distinct from binding energy - generally form transient <u>covalent</u> interactions, or <u>group transfer</u>

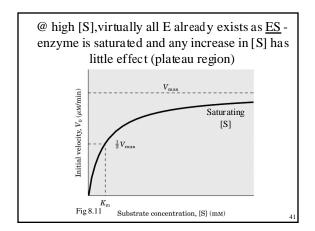
Amino acid residues	General acid form (proton donor)	General base form (proton acceptor)
Glu, Asp	R—COOH	R-COO-
Lys, Arg	$\substack{\mathbf{R}^{\pm \mathbf{N}\mathbf{H}}\\\mathbf{H}}$	$R{-}\ddot{N}H_2$
Cys	R-SH	$R-S^-$
His	R-C=CH HN C	R-C=CH HN H
Ser	R-OH	$R-O^{-}$
Tyr	R ————————————————————————————————————	R

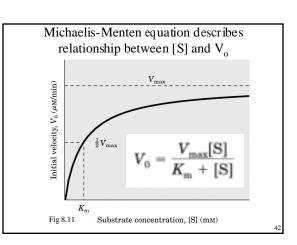


Metal ion catalysis


- Metals can form weak ionic interactions w/substrate (Ca^{2+}, Zn^{2+}, etc.)
- Mediate oxidation-reduction reactions (Cu^{2+},Fe^{2+})
- Nearly 1/3rd of all enzymes require metal ions for activity
- Most enzymes use a combination of catalytic strategies


Enzyme kinetics help us to understand mechanisms


- What is the <u>rate</u> of a reaction?
- How does the rate change in response to changes in [substrate], temperature, pH, [activators], [inhibitors], etc?



Michaelis-Menten equation is a statement of the relationship between V_o , V_{max} and [S], all related via K_m (Michaelis constant)

Important derivation relates K_m and Velocity (V_o)

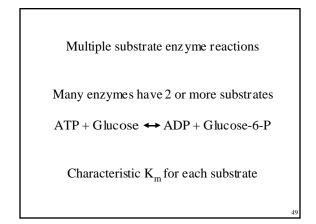
$$\begin{split} K_{m} = [S] \ veloc ity \ is \ half-maximal \\ (i.e. \ when \ V_{o} = 1/2 \ V_{max}) \end{split}$$

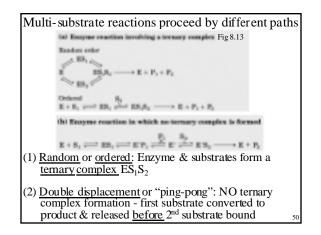
Kinetic parameters used to compare enzyme activities $K_{m} \text{ can become complex, depending on which } \underbrace{\text{step is rate-limiting}} \\ E+S\frac{k_{1}}{k_{4}}ES\frac{k_{2}}{k_{2}}EP\frac{k_{3}}{k_{3}}E+P \\ For our purposes defined as <math>K_{m} = \frac{k_{2} + k_{-1}}{k_{1}} \\ Depending on enzyme, could also be k_{3}, etc.$

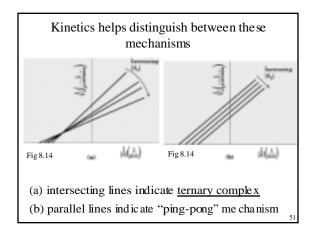
Therefore, a more general rate constant = k_{cat} k_{cat} describes the <u>limiting rate</u> of any enzyme-catalyzed reaction. $k_1, k_2, k_3, \text{etc.}$ $E+S\frac{k_1}{k_4}ES\frac{k_2}{k_2}EP\frac{k_3}{k_3}E+P$ 45

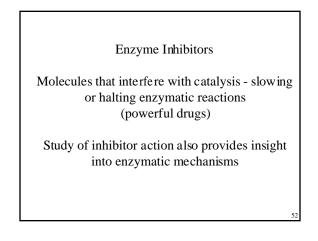
Enzyme	Substrate	k_{cat} (s ⁻¹)
Catalase	H ₂ O ₂	40,000,000
Carbonic anhydrase	HCO ₃	400,000
Acetylcholinesterase	Acetylcholine	14,000
β-Lactamase	Benzylpenicillin	2,000
Fumarase	Fumarate	800
RecA protein (an ATPase)	ATP	0.4

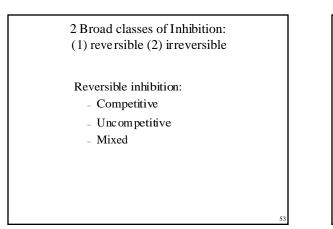
 $K_m \& k_{cat}$ allow us to evaluate the kinetic efficiency of different enzymes

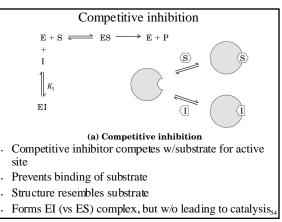

either alone is insufficient

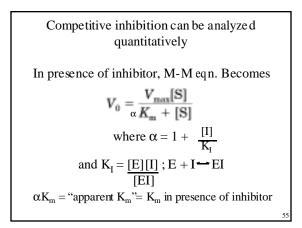

e.g. 2 enzymes can have same k_{cat}, but <u>uncatalyzed</u> rates can be different - need term to compare

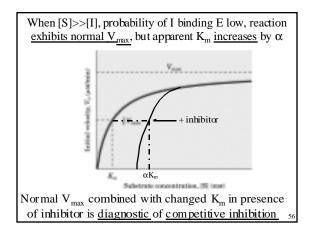

 $k_{cat}/K_m = Specificity constant$

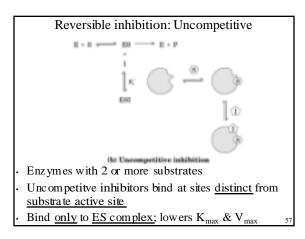

Upper limit of k_{caf}/K_m imposed by rate of diffusion of enzyme & substrate (~10⁹ M⁻¹s⁻¹)

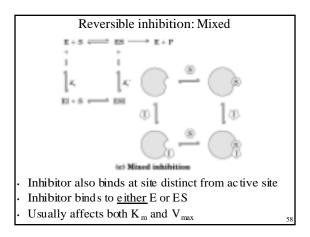

Enzymes for Which k_{cat}/K_m Is Close to the Diffusion-Controlled Limit (10 ⁸ to 10 ⁹ $M^{-1}s^{-1}$)					
Enzyme	Substrate	k _{cat} (s ⁻¹)	К _п (М)	$\frac{k_{cat}/K_m}{(M^{-1}s^{-1})}$	
Acetylcholinesterase	Acetylcholine	1.4×10^{4}	9×10^{-5}	1.6×10^{8}	
Carbonic anhydrase	CO2	1×10^{6}	1.2×10^{-2}	8.3×10^{3}	
	HCO ₃	4×10^{5}	2.6×10^{-2}	1.5×10^{3}	
Catalase	H ₂ O ₂	4×10^{7}	1.1	4×10^{3}	
Crotonase	Crotonyl-CoA	5.7×10^{3}	2×10^{-5}	2.8×10^{8}	
Fumarase	Fumarate	8×10^{2}	5×10^{-6}	1.6×10^{8}	
	Malate	9×10^{2}	2.5×10^{-5}	3.6×10^{3}	
β-Lactamase	Benzylpenicillin	2.0×10^{3}	2×10^{-5}	1×10^{8}	
Triose phosphate isomerase	Glyceraldehyde 3-phosphate	4.3×10^{3}	4.7×10^{-4}	2.4×10^{8}	

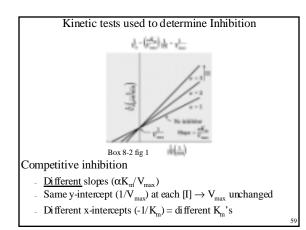


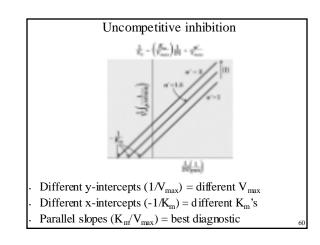


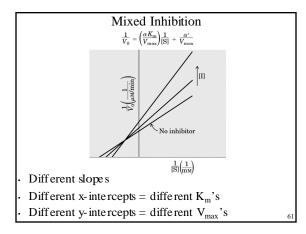


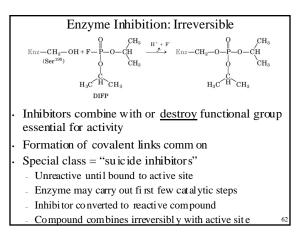


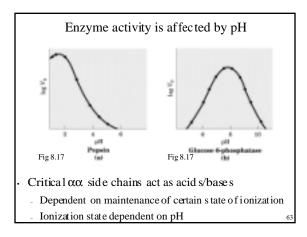


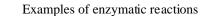










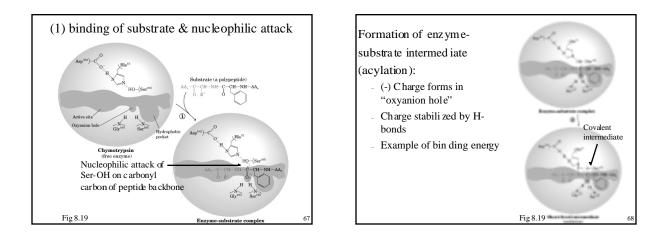


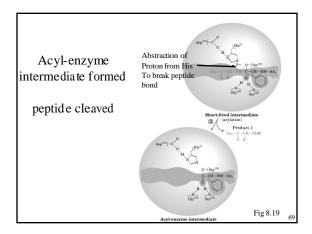
Complete mechanism includes:

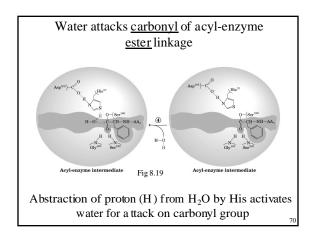
- ID of all substrates, cofactors, p roducts, regulators
- Temporal sequence in which intermediates form
- Structure of each intermediate & transition state
- Rates of interconversion b/w intermediates
- Structural relations hip of enzyme w/each intermediate
- Energy of all intermediate complexes & transition states

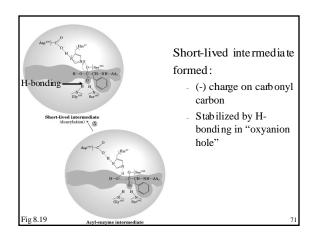
Example Mx's: Chymotrypsin, Hexokinase, Enolase

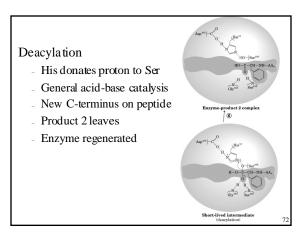
Chymotrypsin

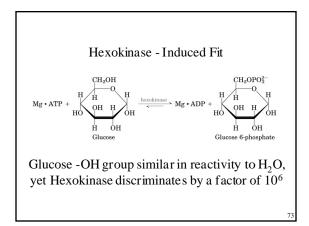

- Protease; catalyzes hydrol ytic cleavage of peptide bonds
- Specific for cleavage of peptid e bonds <u>adjacent</u> to <u>aromatic</u> residues (Tyr, Phe, Trp)
- Increases hydrolysis by factor of 109
- Good example of transition state stabilization, general acid-base catalysis & covalent catalysis

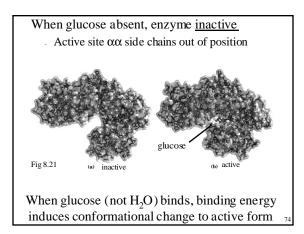

2 major phases: Acylation & De-acylation

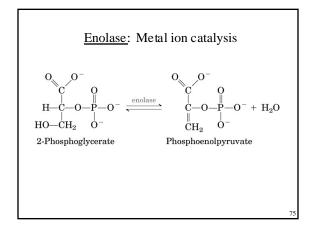

- (1) Acylation transient covalent acyl-enzyme interme diate forme d
 - Peptide bond cleaved
 - Ester linkage formed b/w pepti de <u>carbo nyl carbon</u> and enzyme

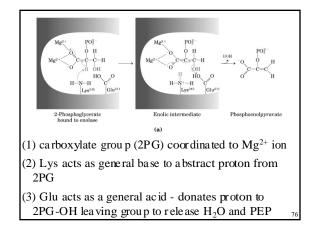

(2) De-acylation

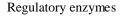

- Ester lin kage hydroly zed
- Nonacylated enzyme regenerated

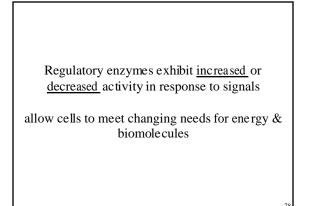


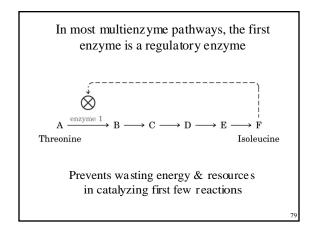


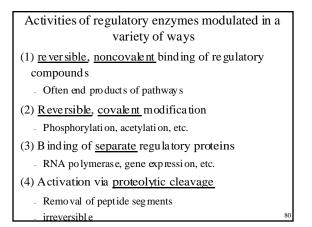


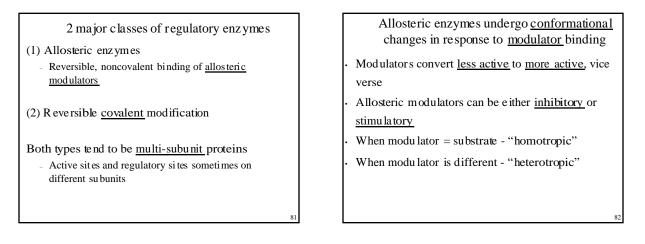


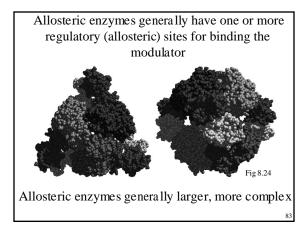


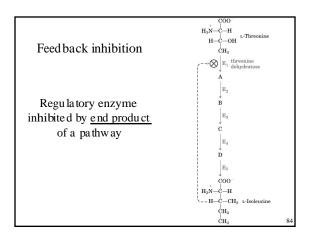


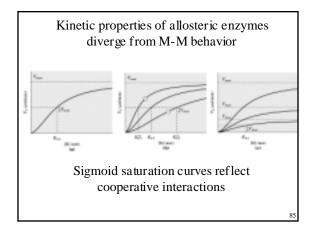


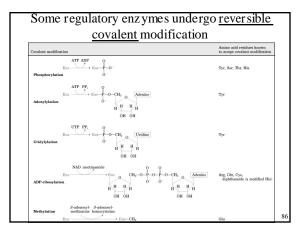

<u>groups</u> of enzyme s often w ork together to catalyze sequential r eactions

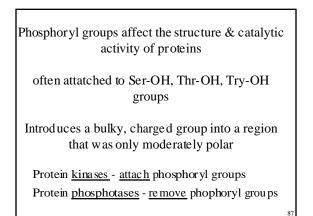

Glucose
$$\rightarrow$$
 Glc-6-P \rightarrow Fru-6-P \rightarrow Fru-1,6-P \rightarrow etc.

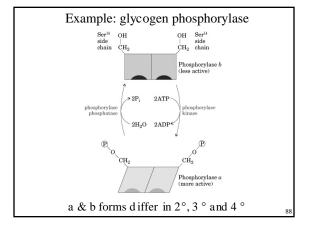

At least one enzyme in pathway will set rate for overall sequence - it catalyzes the <u>slowe st</u> or <u>rate-</u> <u>limiting</u> reaction

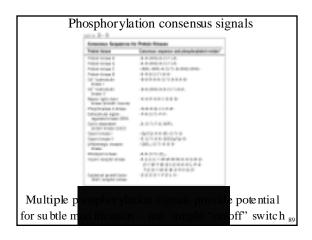


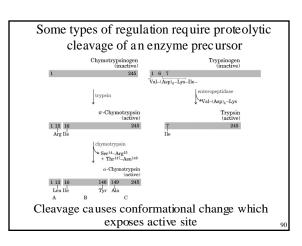


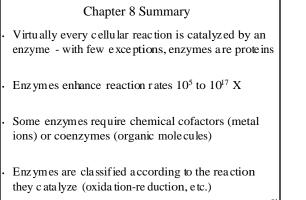












- Energy for enzymatic rate enhancement derived from weak interactions w/substrate (binding energy
 Binding energy

 Lowers substrate entropy (positions substrates)
 Strain s substrate for reaction
 Induced fit (conformational change)

 Common catalytic m echanisms:

 Specific acid-base catalys is (H₂O)
 - General acid-base catalysis (R-groups)
 - Metal ion catalysis
 - Covalent catalysis

Kinetics As $[S] \uparrow$ catalytic activity \uparrow to approach a

As [S] \uparrow , catalytic activity \uparrow to approach a <u>maximum rate</u> (V_{max}), where all E in ES form

 $K_m = [S]$ where $V_o = V_{max}/2$

Michaelis-Menten equation relates velocity $(V_{\rm o})$ to [S] and V_{max} through K_m

$$V_{o} = \frac{V_{max}[S]}{K_{m} + [S]}$$

Both K_m and V_{max} can be measured experimentally

- + $k_{\mbox{\scriptsize cat}}/K_{\mbox{\scriptsize m}}$ provides a good measure of catalytic activity
 - $k_{cat} = tumo ver num ber$
- Enzymes can be inactivated by <u>reversible</u> or <u>irreversible</u> modification (binding or covalent modification)
 - Competitive inhibitors (compete w/substrate)
 - Uncompetitive inhibitors (bind ES, separate site)
 - Mixed inhibitors (bind either E or ES, separate site)

- Feedback inhibition: <u>end</u> product of a pathway inhibits <u>first</u> enzyme in pathway
 - Reduces wasted energy and resources
- Allosteric enzymes: activity adjusted by reversible binding of activators (+) or inhibitors (-)
- Other enzymes can be modulated by covalent modification (phosphorylation, adenylation, etc.)
- Many proteolytic enzymes activated by peptide cleavage.