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ABSTRACT 
The planar slider-rocker mechanism is synthesized for two 

exact positions for the condition of maximum motion 
transmission efficiency. Particular advantageous configurations 
are identified, which render this mechanism suitable for 
generation of large swinging amplitudes of the output member. 
Also a new method of representing graphically objective 
functions of more than two variables is proposed. 

INTRODUCTION 
Many of the pneumatic and hydraulic actuators used in 

practice utilize the slider-rocker mechanism (RTRR), arranged 
such that the input member is the translating element (Fig. 1). 

The synthesis of such a mechanism for generating an 
imposed amplitude of the rocker for a given stroke of the input 
member (the pneumatic or hydraulic cylinder) can be carried 
out very easy graphically (Hunt 1978). However, obtaining a 
good motion transmitting efficiency is not guaranteed, and a 
trial and error must be carried out, until the transmission angle 
γ remains in-between desired limits, usually greater than 45° 
and less than 135°. If a self-return of the output member is 
ensured due to weight or other active forces, a transmission 
angle in-between 30° and 150° can be considered acceptable. 

In the present paper the slider-rocker mechanism is 
investigated for the generation of large amplitude 
displacements of the output member, while ensuring maximum 
motion transmission efficiency. 

PROBLEM FORMULATION 
Given a TRRR mechanism, a ∆ϕmax displacement of the 

output member between the extreme positions ϕ1 and ϕ0 is 
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imposed to be generated with a given maximum stroke of the 
piston ∆xCmax=xC0-xC1. For the sake of generality, a unit value of 
the input member stroke will be considered (∆xCmax=1), the final 
dimensions of the elements being obtained by scaling the entire 
mechanism, until the actual piston stroke of the employed cylinder 
is obtained (usually chosen from pneumatic or hydraulic 
components catalogs). 

With the notations in Fig. 1, for the two imposed extreme 
positions (xC0,ϕ0) and (xC1,ϕ1), the equations of constraint of the 
mechanism are: 
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where 

Fig. 1 Slider-rocker mechanism shown in two positions 
(xC0, ϕ0) and (xC1, ϕ1). 
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Substituting (2) into (1), and for yC=yC0=yC1 gives: 
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By subtracting these equations, and for xC1=xC0-1 results the 
normalized length of the rocker: 
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in which ϕ1=∆ϕmax+ϕ0. Choosing ϕ0, xC0 and yC as design 
variables, the normalized lengths AB and BC can be 
determined based on equation (5) and any of the equations (3) 
or (4), so that the desired output member amplitude ∆ϕmax is 
obtained. 

As can be seen, the problem has a triple infinity of 
solutions, and it is therefore possible to choose the values of ϕ0, 
xC0 and yC such that other conditions upon link length ratios, 
ground-joint disposition or transmission angle can be fulfilled. 

In this paper, only the last of the mentioned conditions will 
be consider, i.e. to have a minimum variation of the angle γ 
from the ideal value of 90° over the working range of the 
mechanism. For a current piston displacement xC, the 

transmission angle can be calculated with the equation: 
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derived by applying the cosine law in the ABC triangle and in the 
right triangle of hypotenuses AC obtained by drawing the 
perpendicular from C over the OX axis. Apart from the extreme 
positions, the transmission angle can experience a limit value for 
xC=0, and therefore this third position must be taken into 
consideration if xC1<0 and xC0>0. 

An objective function of variables ϕ0, xC0 and yC has been 
defined with the following structure: 
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where the output member stroke ∆ϕmax is considered given.  
After several numerical experiments, it proved necessary to 

check that in the extreme positions, the vector loop ABCA keep 
the same orientation (i.e. the cross products AB0×B0C0 and 
AB1×B1C1 have the same sign). In case this requirement is not 
fulfilled, the two extreme positions can not be attained without 

 

Fig. 2 Contour line plots of the test objective function F1 partially minimized with respect to x3, (a) with restrictions,  
and (b) without restrictions. 
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breaking the joints, and the value of the objective function will 
be penalized. 

After a systematic inspection of the design space through 
graphical representations of the objective function (7) for 
various values for the output-member stroke ∆ϕmax, some 
interesting properties have been identified. The method used 
for visualizing more-than-two variables objective function is 
believed to be new and will be described in detail in the 
following paragraph.  

METHOD OF VISUALIZING MULTIVARIABLE 
OBJECTIVE FUNCTIONS 

Single valued functions of two variables can be visualized 
in various ways, basically as projected level curves (Fig. 2) or 
as three-dimension surfaces (Fig. 3). For single-valued 
functions of 3 variables, it is customary to scan two of the 
dimensions through level curves or 3D representations, 
generated for different values of the third variable. In this way 
a feeling of the monotonicity, convexity, or the existence of 
multiple minima of the function can be obtained. For example 
Kota and Chiou (1993) inspected the design space of a three 
variable objective function used for the synthesis of a 
symmetric four bar path generator with no less that 15 such 
representations. It is obvious that the number of representations 
required for inspecting the design space of objective functions 
with more than 3 variables is prohibitively large, and the 
method becomes ineffective. 

The proposed method of visualizing objective-functions of 
more than two variables F(x1,x2,..xn), is to scan at a constant 
step the domain of two of the variables (for example x1 and x2), 
while performing a minimization in respect to the remaining 
variables x3..xn.  

Partial minimization of multivariable objective function is 
not a new concept. For example Papalambros and Wilde (1988) 
have routinely used partial minimization of functions in respect 

to only one of the variables in solving optimal design problems.  
Following Liu and Angeles (1992), the sets x1i, x2i can be 

named state variables, and together with the values minF(x3..xn)i 
of the partial minima can be used in generating appropriate level-
curve diagrams or 3D surfaces. Such representations will give a 
good feeling of the properties of the objective function, mainly if 
several combinations of the state variables will be used for 
generating the graphical representations. To show the effectiveness 
of the method, the cases of two test objective functions taken from 
Hansen et al. (1989) will be further considered. The first test 
objective function was: 
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Its minimum value is -5/6 and occurs in the point (1/3,1/3,1/3) 
for which the constraint x1+x2+x3-1≤0. From the graphical 
representation in Fig. 2-a, it is apparent that the minimum is 
located inside of the feasible domain, which is not true. This is 
revealed by the graphical representation of the partial minima with 
respect to x3 of the same function, but without restrictions 
(Fig. 2-b), which shows a constant decrease of its value with the 
increase of x1 and x2. For generating the partial minima diagrams, 
Brent’s algorithm has been used (Brent 1972) and ramp-type 
penalty functions that are very easy to program.  

The second test objective function considered was: 

 
Fig. 3 Surface plots of the test objective function F2, partially minimized with respect (a) to x2,x3,x4,x5,x6  

and (b) to x1,x2,x3,x6,x7. 



  Copyright © 2000 by ASME 

5.5x59.3x9.2
3.8x3.73.8x3.7

28x178.0x7.0
6.3x6.2

)xxxx(7854.0)xx(7477.0

)xx(x508.1)0934.43x9334.14

x3333.3(xx7854.0)x,...x,x(2F

76

54

32

1

2
75

2
64

3
7

3
6

2
7

2
613

2
3

3
21721

≤≤≤≤
≤≤≤≤
≤≤≤≤

≤≤

⋅+⋅+++

++⋅−−⋅+

+⋅⋅⋅=

and

:to subjected   (9) 

Its minimum is 2352.448 and occurs in the point (2.6, 0.7, 
17, 7.3, 7.3, 2.9, 5), which is confirmed by the two graphs in 
Fig. 3. In this case, the partial minima of the function required 
to generate the 3D diagrams were calculated using Simplex 
algorithm due to Nelder and Mead (Press et al. 1989) and the 
same ramp-type penalty functions.  

The generation of the successive partial minima used for 
sampling the function surface is CPU intensive, but with the 
advent of nowadays very high-speed personal computers, this 
is not a serious problem. The procedure is very well suitable for 
being implemented on a parallel computer. The CPU time can 
be further reduced by using the previous value found for one 
point on the diagram as an initial guess for the next search.  

NUMERICAL RESULTS 
The above-described procedure was applied to visualize 

the objective function (7). For an imposed value of the output 
member ∆ϕmax=120°, the level curve diagram of the partial 

minima of arcos F(ϕ0, xC0, yC) in respect with ϕ0 is shown in 
Fig. 4. In Fig. 5 a detail representation of the minimum region of 
the same function is given. One can notice that the design space is 
symmetric relative to the vertical xC0=0.5, and also that two global 
extrema occur, one for xC0=0.3690 and yC=0.4476, and the second 
one for xC0=0.6310 and the same yC=0.4476. The initial angle of 
the crank are ϕ0=69.503° and ϕ0=-9.502° respectively.  

The graphical representations in Fig. 5 of the corresponding 
optimum mechanisms, shows that one is the mirror image of the 
other, both having the same member lengths i.e. AB=0.3471 and 
BC=0.5093. Consequently, the same transmission function ϕ(xC) 
and variation of the transmission angle γ(xC) is obtained for both 
mechanisms, but reverted over ∆xC axis (where ∆xC=xC0-xC is the 
relative displacement of the piston from its initial position xC0). 
The maximum departure of the transmission angle γ from the 90° 
value is in both cases ±31.5°, an unexpectedly small value for an 
output member swinging travel of 120°. In contrast, the 
transmission angle of the oscillating-cylinder actuating mechanism 
of RTRR structure ensures a departure of ±60° of the transmission 
angle from the ideal value of 90° for the same amplitude of the 
rocker (Simionescu 1999).  

Even a 180° swinging amplitude of the rocker can be 
generated while still maintaining an acceptable variation of the 
transmission angle. By minimizing the same objective function 
F(ϕ0,xC0,yC) for ∆ϕmax=180° the following optimum dimensions 
were obtained: xC0=0.75, (or xC0=0.25), yC=0.28868 AB=0.3307 
and BC=0.5518. The maximum departure of the transmission 
angle from the optimum value of 90° is in this case ±57.32°.  

It is to be noticed that the mechanisms described experience 
positions in which they locked completely if motion is suppose to 
be transmitted in reverse (from the rocker to the actuating 
cylinder). Bagci (1987) gave analytical relations for the synthesis 
of the slider-rocker mechanisms for two imposed positions, of 
which one is a locking position, but without any concern about the 
motion transmission efficiency.  

 
Fig. 4 Contour plots of the objective function F, partially 

minimized with respect to ϕ0 and for ∆ϕmax=120°. The level of 
the contour-lines were edited so as to generate the function 

arccos(F), for which the maximum values are sought. 
Fig. 5 Detail representation of the minimum area in Fig.  4 
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CONCLUSIONS 
The above results prove that the slider-rocker mechanism 

has good capabilities of converting a translating input into a 
rotary output, while simultaneously ensuring good transmission 
efficiency of the motion.  

If the mechanism is supposed to be disposed into a 
confined space, a diagram like the one in Fig. 4 can indicate the 
maximum transmission angles that can occur for different 
locations of the actuating cylinder axis (yC) and initial position 
of the pivot joint C (xC0). 

In a future paper design charts will be provided to help the 
designer in quickly choosing the appropriate dimensions of the 
mechanism members and the disposition of the ground joints, 
for an imposed swinging amplitude ∆ϕ of the rocker. 
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Fig. 5 The mechanisms corresponding to the global minima 
of the objective function F(ϕ0,xC0,yC), for ∆ϕmax=120°. The 

diagram corresponds to the mechanism (a). 

 
Fig. 7 One of the two optimum mechanism that generates an 
amplitude ∆ϕmax=180° of the rocker, and the corresponding 

diagrams ϕ(∆xC) and γ(∆xC).


