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ABSTRACT 

The main features of a software named D_3D specially devised for visualizing 

objective functions as contour plots and 3D surfaces are presented. These 

include detailing the minimum areas by logarithmically spacing the level 

curves, the possibility of truncating the upper parts of the surface (particularly 

useful in representing penalized objective functions) and representing the 

gradient of the function as a vector field projected on the bottom plane in 

combination with 3D surface plots.  

INTRODUCTION 

Objective functions arising in optimisation problems are single valued 
functions of one or more variables.  Functions of one, two, even three variables 
allow for graphical representation in the 2 or 3 dimensional Cartesian space 
aaa1] (Encarnacao et al 1990).  Such representations permit attaining a good 
feeling of the monotonicity, convexity, and the existence of multiple minima of 
the function, and are therefore usual encounter in most numerical optimisation 
and operations research publications.  

The purpose of this paper is to present a computer software named D_3D 
specially devised for representing objective functions of two variables, that has 
several features not yet at hand in commercially available mathematical and 
visualisation software.  These features will be introduced based on a simple 
optimisation problem, of finding the equilibrium position of a spring-restrain 
double pendulum.   

EXAMPLE PROBLEM 

The dynamic analysis of constrained multibody systems includes, among 
time response and kinetostatic analysis, the problem of determining the static 
equilibrium configuration.  Several methods for solving the equilibrium problem 
are known (Simionescu and Fawcett 1997) of which searching for the minimum 
of total potential energy is the most simple and easy to apply.  On the other 
hand, determining the equilibrium position of spring and weight systems are 
good illustrative examples of optimisation problems that can arise in practice 
(Vanderplaats 1984).  



 

The mass spring system 
considered for determining the 
equilibrium position is that of the 
double pendulum in Fig. 1 amplified 
with a linear spring (k1, l01) having one 
end attached to the outer lumped mass 
and the other end fixed to the frame at 
point A(xA,yA).  Mounted in between 
the same points G2 and A, there are an 
ideal inextensible massless thread of 
length l, connected in series with a 
second spring (k2, l02). 

For the system under 
consideration, the total potential 
energy is the sum of the gravity 
potentials of masses m1 and m2, that 
due to the constant force P (which can 
also be considered as deriving from a 
potential) and that of the elastic energy 

of the two springs.  Choosing the reference position in deriving the potentials of 
m1, m2 and P is arbitrary.  In this example the extreme position of point G2 along 
the positive axis Ox for the potential of P, and G1 and G2 along Oz for the 
gravity potentials, have been used as reference.  Therefore the total potential 
energy of the system is: 
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It is to observe that the term Q(1,2) acts as a barrier penalty function 
(Press et al 1992), with the penalty factor k2, corresponding to the case when the 
point G2 is constrained to remain inside a circle of centre A and radius l+l02. 

 

Fig. 1 A double pendulum restrained with 

elastic springs (g=9.81m/s2 is the 

acceleration due to gravity) 



 

NUMERICAL RESULTS 

The parameters of the system 
in Fig. 1 were considered to be:  
l1=0.45m, l2=0.35m, m1=0.75kg, 
m2=0.5kg, xA=0.25m, zA=-0.25m, 
k1=9.5N/m, l01=0.2m, 
k2=2104N/m, l02=0.1m and 
P=1.8N.  Initially the thread length 
l was chosen sufficiently long so 
that the spring k2 never becomes 
effective i.e. the penalty term Q 
equals zero irrespective of the 
value of 1 and 2 [identical 
results are obtained considering 
k2=0 in equation (2)].  For this 
particular case, the potential 
function U(1, 2) has the shape in 
Fig. 2.  Two points of extrema can 
be identified, of which the 

maximum point corresponds to an unstable equilibrium position. 
The static equilibrium position was determined by minimising the function 

(1) using Fletcher-Reeves algorithm (Press et al 1992), resulting in 1=6.0762°, 
2=88.0589° for which U=3.72088 Nm.  

For l=0.65m the shape of the potential function U(1, 2) changes to that in 
Fig. 3, showing that the point of maximum have moved to a different location, 

however without modifying the 
location and value of the global 
minimum.  

As one can notice, a whole 
z-axis range representation of 
the function U in this case is 
less suggestive.  The solution 
chosen for detailing the 
minimum area of the function as 
shown in Fig. 3, was to map 
logarithmically spaced level 
curves on the function surface.  
This way the level curves are 
concentrated in the lower region 
of the function surface and the 
global minimum highlighted.  

The relation used for calculating the height of the horizontal cutting plane 
that generates the j-th level curve was: 
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where n is the total number of level curves, and zmin and zmax are the lower and 
upper range of the z-axis, which can coincide or not with the minimum and 

 

Fig. 2 Graphical representation of the potential 

function U(1,2) for k2=0.  Also shown as arrows 

projected on the bottom plane is the gradient of 

the function.  

 

Fig. 3 A whole range representation of the potential 

function for l=0.65m and k2=2104N/m. 



 

maximum function values from 
among the grid points used for 
sampling the function surface.  

The idea of generating 
unequally spaced level curve 
diagrams is not a new concept, but 
as proposed, there is the certitude 
that the minimum region is well 
detailed, without the need of 
interactively editing the level of 
some equally spaced level curves, 
as it is the case of many graphs in 
Reklaitis et al (1983).  

A second method that can be 
used for detailing the minimum 
region of the function-surface, is 
to trim at a certain height the 

upper region of the graph.  The D_3D program has the feature of permitting 
upon request an accurate truncating of the upper (or lower) regions of the 
function surface (Fig. 4).  Commercially available software like MS EXCEL™ 
and MATHEMATICA™ allow truncating the function surface, but the method 
used (of replacing the z values outside the [zmin..zmax] domain with exactly zmin 
or zmax) is not very accurate (Fig. 5), mainly if the number of points used in 
sampling the function is small.  A different solution in service of MATLAB™ 
through the Axis function is to blind the upper and lower parts of the graph, 
which is obviously even less satisfactory. 

In order to generate an equivalent of the infinite-barrier penalty function 
(Reklaitis et al 1983), for the same double-pendulum, l=1.0m and k2=1020N/m 
have been considered.  The shape of the potential function U(1,2) looks as 
shown in Fig. 6, case in which the lower region of the function surface appears 
completely flatten, hence any details of the minimum region are hidden.  Thus a 

truncated representation of the 
function surface proves even 
more useful that in the previous 
case.  

By reducing the upper limit 
of the z-axis domain from 
1.51017 to 20, the diagram in 
Fig. 7 has been obtained.  To 
increase the accuracy of 
representing the intersection 
between the function surface 
and vertical cylinder induced by 
the penalty term, the number of 
points used for sampling the 
function surface has been 
increased.  However, in order 
not to darken completely the 
surface, only the lines of 

 

Fig. 4 Truncated representation of the potential 

function for l=0.65m and k2=2104N/m. 

 

Fig. 5 The same representation as in Fig. 4 produced 

with MS-EXCEL™.  A similar effect has the 

Plotrange option in MATHEMATICA software. 



 

constant a1 have been generated.  This feature is also useful when representing 
noisy data or highly multimodal functions such as Ackley’s test objective 
function (Gen and Cheng 1997):  
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shown in Fig. 8 for n=2 as lines of constant x1 combined with contour lines 
projected on the bottom 
plane.  shown in Fig. 8 for 
n=2 as lines of constant x1 
combined with contour lines 
projected on the bottom 
plane.  

CONCLUSIONS 

The case of the total 
potential function of a spring 
restrained double pendulum 
has been considered to 
illustrate the features of the 
D_3D function 
representation software, 
particularly design to 

facilitate representing graphically objective functions of two variables.  These 
features are summarised briefly in the following:  
-plotting single-valued functions of two real variables z=f(u,v) as polylines of 
constant u, polylines of constant v, crossed-hatch representations or raised level-

curves (constant z profiles) 
with or without the hidden 
lines removed;  
-accurate solving of the 
intersection problem between 
horizontal plane(s) and the 
function surface in truncated 
plots over z-axes, both in 
crosshatch and in constant x, 
y and z profile 
representations;  
-generating contour maps of 
the same types of functions;  
-plotting the gradient of the 
function as a vector field 
projected on the bottom plane 
using the same grid of heights 

for numerically calculation of its components [resent implementations of this 
feature in mathematical and visualization software allow the representation of 
the gradient only in top view projections, and require the user to provide 

 

Fig. 6 A whole range representation of U(1,2) for 

l=1.0m and k2=1020N/m. 

 

Fig. 7 Truncated representation of the potential 

function surface U(1,2) for l=1.0m and k2=1020N/m. 



 

separately the components of 
the gradient over the x and y 
axes – see Quiver function in 
MATLAB 6 or Champ 
function in SCILAB 2.5 
(http://www-

rocq.inria.fr/scilab/)] 
-generation of logarithmically 
spaced level curve diagrams 
(projected, or mapped on the 
function surface) for detailing 
the global minimum area in 
objective functions;  
-the height of the level curves 
generated automatically 
(equally spaced or 
logarithmically spaced), can 
be further modified 
interactively and saved to a 

file from where they can be read later on;  
-the orientation of the z-axis can be reversed on request, an alternative solution 
for viewing function surfaces from below;  
-all the graphic images can be exported as PCX or DXF files, and further used in 
spreadsheets and reports. 
More representations produced with D_3D software can be found on the Internet 
at:  http://www.auburn.edu/~simiope/fxy.htm   
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Fig. 8 Ackley’s function represented as lines of 

constant x2 and 15 contour lines projected on the 

bottom plane, equally spaced over the [0..15] interval. 
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