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In this dissertation new optimum design tools are proposed and tested for solving several difficult 

multibody design problems drawn from engineering practice.   

Estimation of Distribution Algorithms (EDA) have been considered as optimization tools for 

their robustness and global optimum finding capabilities.  EDA’s are the latest newcomers to the 

growing family of Evolutionary Algorithms, and their potential for solving constrained optimization 

problems has been investigated in this dissertation for the first time.   

Secondly a new method of visualizing multivariate functions is proposed where the dimension 

reduction is done by repeated partial global minimizations and maximizations.  For objective functions 

in particular it allows studying constraint activity, performing parametric design studies, what-if 

scenario analysis, etc.  

These tools were applied successfully to the solution of several multibody design problems:   

▪ Synthesis of the slider-crank and oscillating slide actuators for imposed output member 

displacement and maximum motion transmission efficiency.  By systematically investigating their 
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properties, design and performance charts were generated and new properties and possible applications 

identified (patent pending).   

▪ Determination of the optimum number of gear teeth of a multispeed automatic transmission that 

best fulfill imposed gear ratios, under the conditions of avoiding gear-teeth undercut, noninterference of 

neighboring gears and assembling equally spaced planets.   

▪ Synthesis of a five-link rear wheel suspension used in automobiles from the condition of 

simultaneously ensuring that the wheel base, wheel track, toe and camber angles have minimum 

variations while the wheel oscillates.  Displacement, velocity, acceleration and roll-center height 

analyses were also performed in a new, simplified manner and improvements of the solutions obtained 

through synthesis over an existing design revealed.  The analysis results were found to agree with those 

obtained using a commercially available multibody simulation software.   

The above problems were solved with the goal of revealing general properties of the respective 

multibody systems and whenever possible, parameter charts and design recommendations have been 

advanced to aid the practicing engineer.   
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CHAPTER 1. INTRODUCTION 

1.1. Optimum Seeking, Visualization and the Design Process 

Any engineering design problem is an optimization problem, where certain functional 

performances are sought to be maximized while the manufacturing and maintenance expenses 

of the product are sought to be minimized [2] [10].  In the design of multibody systems there 

are well defined measures that are desired to be maximums or minimums.  For example the 

efficiency or mechanical advantage should be maximum while the departure between the 

imposed and the actual motion of the output member of a linkage mechanism should be 

minumum.  Likewise the error between the imposed and actual gear ratios of a multispeed gear 

transmission should also be minimum [5] [7].  In many cases additional conflicting 

requirements can be prescribed and the designer must seek a superior tradeoff among these [4].  

These translate into multiobjective optimization problems, and although not the main topic of 

this dissertation, Chapter 6 presents the example of synthesizing a rear wheel suspension 

system used in automobiles where the problem of satisfying several functional requirements 

was formulated in a simplified manner as a single objective optimization problem.   

Optimal design is the process of finding the values of certain modifiable parameters called 

design variables that minimize or maximize a function called cost or objective function.  In 

order for the solution to the optimization problem to be acceptable, additional requirements 

must be satisfied, known as constraints.  Formally, a general nonlinear programming problem 

requires finding the minimum or maximum of a function of n real variables [10]:   

)x...x( 1 nf  (1.1) 
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subject to side constraints:   

)1(xxx maxmin njjjj ≤≤≤≤ , (1.2) 

inequality constraints:   

)1(0)x...x( 11 njg nj ≤≤≤  (1.3) 

and equality constraints:   

)1(0)x...x( 21 njh nj ≤≤= . (1.4) 

Often case in engineering problems the design variables are imposed integer or discrete values.  

Imposing some or all of the design variables to be integer can be accounted for by further 

formulating equality constraints of the form:  

)1(0x)x( 3njround jj ≤≤=− . (1.5) 

where round is the round-off function and n3 ≤ n.  Alternatively a continuous optimization 

problem can be solved first and then a search performed in the neighborhood of the optima 

thus found, until a set of integers that satisfy all constraints is identified (the cases of the 

design variables being imposed discrete values can be handled in a similar manner) [2] [10].   

When investigating optimization problems the understanding of the relations between 

design variables is greatly enhanced by visualizing the n-dimensional objective function 

surface [6] [16].  This would allow establishing dependences between design variables as they 

aggregate, together with the constraints, within the objective function.  Moreover, according 

to [1], “the knowledge of a family of good solutions is far more important than obtaining an 

isolated optimum.”  This emphasizes the need of identifying not only an improvement to the 

existing solution - as some advanced engineering analysis software are capable of [16] - or of 

the global optimum point, but also of the most promising local optimum points which may 

have additional good properties the designer can exploit (like better stability of the optimum or 
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less sensitivity to constraint violation) [10].  Unfortunately, visualization of complex design 

spaces yields difficulty due to our limitations of perceiving dimensions higher than three, 

although there are a number of methods available of visualizing hypersurfaces of functions of 

more than two variables, as discussed in Chapter 3.   

Because of their robustness, ease of implementation and global optimum finding 

capabilities, Evolutionary Algorithms (EA) have drawn considerable attention as optimization 

methods for engineering [9].  EAs are stochastic optimization methods that use populations of 

individuals (design solutions) rather than a single solution at a time.  They employ the 

simulated genetic operators of mutation and crossover and the principle of survival of the 

fittest in natural evolution to evolve improved populations of individuals [3].  Starting with a 

randomly initialized population, new individuals are generated, their probability of survival 

depending on their fitness (the best are kept with higher probability, the worst are rapidly 

discarded).   

Three main algorithmic trends have been developed over the years that employ the 

aforementioned evolutionary schemes: Genetic Algorithms (GA), Evolutionary Strategies (ES) 

and Evolutionary Programming (EP).  In addition, there is a new class of algorithms that 

emerged relatively recently into the field of Evolutionary Computation, called Estimation of 

Distribution Algorithms (EDA) [8].  As compared to the more traditional Evolutionary 

Algorithms, EDAs do not employ mutation and crossover operations.  Instead, the new 

population of individuals is sampled from a probability distribution, which is estimated from a 

database of selected individuals from the previous generation.  This reduces the number of 

parameters the user must set at the beginning of the run (i.e. population size and survival rate), 

making EDAs easier to implement; moreover, their population dynamics is easier to 
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comprehend, which facilitates tuning these parameters in order to achieve improved searching 

performance.   

1.2. Objectives of this Research 

The first research objective is to investigate the use of Estimation of Distribution 

Algorithms in solving constrained optimization problems.  EDAs are fairly new optimization 

techniques and their potential of solving constrained optimization problems has not been yet 

investigated [12].  In this dissertation several constraint handing techniques of the penalty and 

repair type were experimented with in conjunction with EDAs, and some useful conclusions 

highlighted.   

The second objective is the development of a new technique of visualizing the hypersurface 

of single-valued functions of more than two variables useful in inspecting the design space of 

optimization problems, “what-if” scenario analyses etc.  This new technique is tightly linked 

to optimization theory since the dimension reduction is performed through repeated partial 

global minimization and maximization of the function to be visualized [13].   

The third objective is to illustrate the advantage of using EDAs and of the proposed 

visualization technique in solving several complex engineering optimization problems:  

▪ synthesis of the slider-crank and oscillating slide mechanisms for maximum motion 

transmission efficiency and imposed displacement of the output members [15];   

▪ determination of the optimum number of gear teeth of an automatic transmission used in 

automobiles [14];   

▪ synthesis of a five-link suspension system used in automobiles of the condition of 

minimum camber, wheel track and wheel base variations [11].   
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1.3. Organization of this Dissertation 

The capability of Estimation of Distribution Algorithms (EDAs) of solving constrained 

optimization problems has been investigated in Chapter 2.  Extensive numerical experiments 

have been performed to test their suitability of solving constrained optimization problems 

when coupled with several types of constraint handling techniques of the penalty and repair 

type.   

Chapter 3 begins with a review of the known hypersurface and hyperobject visualization 

techniques.  Then a description of a new method of visualizing multivariate functions, in 

particular objective functions, is given, supported by several numerical examples.   

In Chapter 4 the usefulness of the author’s visualization technique is illustrated in the 

motion capability investigation and optimum design of the slider-crank and oscillating slide 

actuators, from the condition of maximum motion transmission efficiency and imposed 

displacement of the output member.   

In Chapter 5 the problem of optimum synthesis of the gear teeth of an automatic 

transmission used in automobiles is solved using an EDA of the Population Based Incremental 

Learning type (PBIL).  The visualization method developed in Chapter 3 proved useful in 

investigating the design space of this optimization problem and selecting the final number of 

gear teeth based on additional constructive criteria.   

A complex optimization problem is solved in Chapter 6, that of synthesizing of a five-link 

suspension system for automobile from the condition of the camber, wheel-track and wheel-

base having minimum variation as the wheel oscillates.  Displacement, velocity and 

acceleration analysis of this suspension mechanism are also performed in a new, simplified 

manner and improvements over an existing design revealed.  The simulation results were 
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found to agree with those obtained using MSC.visualNastran 4D multibody simulation 

software.   

Concluding remarks and directions of further studies are outlined in Chapter 7.   
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CHAPTER 2. INVESTIGATION OF THE CONSTRAINED OPTIMIZATION 

PROBLEM SOLVING CAPABILITIES OF ESTIMATION OF DISTRIBUTION 

ALGORITHMS 

Two variants of Estimation of Distribution Algorithm (EDA) were tested against solving 

several continuous optimization problems with constraints.  Numerical experiments were 

conducted and comparison was made between constraint handling using several types of 

penalty and repair operators in case of both elitist and non-elitist implementations of the 

EDAs.  Graphical display and animations of representative runs of the best and worst 

performers proved useful in enhancing the understanding of how such algorithms work and 

deciding which type of constraint is more appropriate for certain type of practical problems.   

2.1. Introduction  

Estimation of Distribution Algorithms are relatively newcomers to the field of 

Evolutionary Computation [1] [2].  Their appealing features over other evolutionary 

algorithms are a simple structure and an intuitive dynamics of the population which facilitate 

choosing the values of the control parameters.  In standard EDAs there are no crossover and 

mutation operations, the new population being generated by sampling the probability 

distribution of a number of superior individuals selected from the current population.  As 

highlighted in [3], the known EDA implementations differ by the probability distributions and 

by the survival selection schemes employed.   

Several authors have reported solving combinatorial, discrete and continuous optimization 

problems using EDAs [2] [4] [5] [6].  There is however no report available on the capabilities 
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of EDAs of solving constrained optimization problems.  In this chapter the Univariate 

Marginal Distribution Algorithm (UMDA) and a variant of the Population Based Incremental 

Learning Algorithm (PBIL) were tested on solving three continuous objective functions with 

constraints.  Comparison was made between constraint handling using penalty and repair 

techniques through numerical experimentation and some useful conclusions highlighted.   

2.2 Estimation of Distribution Algorithms Tested 

Two Estimation of Distribution Algorithms have been implemented in both elitist and non-

elitist variants as described below.   

▪ The first algorithm considered, a Univariate Marginal Distribution Algorithm (UMDA) 

[3] [5] was coded in the following structure:   

Step 1: Generate M uniform random points within the imposed boundaries of the design 

variables [xi min…xi max] (i=1...n) or until at least one feasible individual has been generated.  

The population size, M, is a constant specified by the user.   

repeat    

Step 2: Select the best N individuals in the population and evaluate the average and 

standard deviation vectors:   

{ } )...1()(
N
1 N

1k
k nixii =
⎭
⎬
⎫

⎩
⎨
⎧

=µ ∑
=

 (2.1) 

{ } [ ] )...1()(
N
1 N

1k

2
k nix iii =

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

µ−=σ ∑
=

 (2.2) 

In the above formulae N is a specified integer restricted to 1 < N < M.   

Step 3: Replace the whole current population by generating M normally distributed random 

points {xi}, (i=1...n) with the averages and standard deviations given by equations (2.1) and 
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(2.2) respectively.  In order to ensure that the newly generated individuals satisfy the imposed 

side constraints, the following corrections were performed:   

maxmax

minmin

  then  If

  then  If

iiii

iiii

xxxx

xxxx

=>

=<
 (2.3) 

Additionally, a record of the best-fit individual generated so far is kept to be provided as 

solution of the search.   

until a certain stopping criteria is met.   

The stopping criteria can be either attaining an imposed maximum number of generations 

Gmax or exceeding a prescribed maximum number of function evaluations NF.   

▪ The second Estimation of Distribution Algorithm tested was a variant of the Population 

Based Incremental Learning Algorithm (PBIL) [6].  The algorithm employs the same steps 1 

and 2 and stopping criteria as UMDA, but uses a different population-generation scheme i.e.:   

Step 3: Generate M new points {xi}, (i=1...n, r=1...M) to replace the current population, 

using the standard deviations (2.2) and the following vector of corrected average values:   

{ } { }best
* )()1( iii x⋅α+µ⋅α−=µ  (2.4) 

where µi are given by the same formula (2.1) and α is a variable parameter:   

( ) nw maxc GG⋅=α  (2.5) 

with Gc current generation number and w a chosen constant between 0 and 1.  It is to be 

noticed that for w=0 the algorithm becomes a UMDA algorithm.  In order to ensure that the 

imposed side constraints are satisfied, the same tests in equation (2.3) are applied to the newly 

generated points.  Similarly to UMDA, the best fit individual encountered so far is recorded to 

be provided as solution of the search.   

In case of elitist implementations of the above two algorithms, further referred to as 

E-UMDA and E-PBIL, Step 3 must be modified so that only M-1 new individuals are 
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generated and the best fit individual in the population is not destroyed - evidently, there will no 

longer be necessary to keep a record of the best fit individual generated so far.   

2.3. Constraint Handling Techniques 

There are numerous constraint-handling techniques used in evolutionary computation as 

follows [7] [8] [9]:  

▪ various implementations of the penalty method,  

▪ specialized representations and operators,  

▪ repair algorithms,  

▪ separation of objectives and constraints (behavioral memory, superiority of feasible 

points, multiobjective optimization techniques)  

▪ hybrid algorithms etc.   

Of the known constraints handling techniques, penalty and repair methods will be numerically 

tested in association with UMDA and PBIL algorithms described in the previous paragraph.   

2.3.1. Penalty methods   

Three penalty methods have been numerically experimented with; all of them operate by 

providing some fitness value to the infeasible individuals in the population that will further 

help with their ranking.  Two of the considered methods are step-type penalties while a third 

method employs the Euclidean-distance from the considered infeasible point to the closest 

feasible point as a measure of its infeasibility.   

1) The first penalty method tested, of the step type, will be further referred to as 

1K-Penalty and has the form:   

⎩
⎨
⎧

=
infeasibleif
feasibleif)...(F

)...(fitness 1
1 K

xx
xx n

n  (2.6) 
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where K a constant about one order of magnitude greater than the expected global maxima of 

the constrained function.   Such a penalty is very easy to implement but has the main drawback 

that the search is difficult to initiate in case of highly constrained problems with their 

landscape resembling flat plateaus with scattered crevasses (or only one such crevasse).   

2) A slightly more elaborate penalty method tested resembling the K-method in [10], 

further called νK-Penalty was:  

⎩
⎨
⎧

⋅
=

infeasibleif
feasibleif)...(F

)...(fitness 1
1 Kv

xx
xx n

n  (2.7) 

with ν is the number of constraints violated at point (x1…xn).  In this form some rough 

information about the degree of constraint violation at a certain point can be acquired, which 

can help directing the search toward the feasible domain.  However, as will be seen in case of 

the first test problem below, the method is less effective when the global optima is bounded by 

more than one active constraint.   

3) A third penalty method tested named DK-Penalty:   

⎩
⎨
⎧

⋅
=

infeasibleif
feasibleif)...(F

)...(fitness 1
1 KD

xx
xx 2

n
n  (2.8) 

employs the distance D between the considered infeasible point and the closest to it feasible 

point in the population [11].  This will require evaluating the Euclidean distance (or of some 

other norm) between the current point and all feasible points in the population, slowing down 

the algorithm.   

2.3.2. Infeasible-individual repair   

These constraint-handling techniques require that at least one feasible individual exists in 

the current population.  It involves a line searching (or some other crossover operation) 
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between the current infeasible point and a selected feasible individual in the population.  In the 

present study the following repair methods have been experimented with:   

Repair 1 (repair by line search): Assign to the infeasible individual to be repaired the 

closest feasible individual in the population.  If there are no feasible individuals in the current 

population, the repair operation must be suspended and the infeasible points treated in a simple 

1K-Penalty manner (this is the form in which the method was implemented in the numerical 

experiments performed).  Alternatively, in case of non-elitist algorithms, the best point 

encountered so far can be used as a second point for the line search operation.  After the 

infeasible-feasible pairs have been made, a random search is performed along the line 

connecting the two points until a second feasible point is generated to be introduced in the 

population in replace to the considered infeasible individual [12].   

Repair 2 (repair by crossover):  Instead of doing a line search, which requires a number of 

objective function evaluations, one single crossover operation can be performed (for example a 

midpoint crossover) between the current infeasible and its closest feasible individuals.  Since 

the offspring that will replace the infeasible parent may in turn be infeasible, the method is 

more of an incomplete repair.   

Repair 3 (repair by cloning):  Replace the infeasible individual with an identical copy of 

the feasible individual that is closes to it.  When only one or two feasible individuals are 

available in the population, in order to preserve diversity (particularly for elitist algorithms), it 

might become necessary to repair only part of the infeasible individuals (a partial repair) to 

avoid standard deviation becoming too small, or to impose a lower limit upon the components 

of the standard deviation vector.   
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Combined repairs:  Combination of the above approaches can also be employed, like for 

example repairing half of the infeasible individuals using cloning and the other half using 

some crossover operation.   

Even if they don’t always eliminate the infeasible individuals, the above listed repair 

methods contribute to a favorable confinement of the population toward the feasible domain(s) 

of the search space.  Repair methods 2 and 3 have the appealing feature that require less or no 

additional evaluations of the objective function.  They are also suitable in case of discrete or 

integer optimization problems, when the feasible space is very fragmented or is reduced to 

only scattered points, a feature that will be used in Chapter 5 in finding the optimum teeth 

number of an multispeed automatic transmission.   

2.4. Test Problems  

Several numerical experiments were performed on solving three constrained objective 

functions.  Since graphical representation and animation of the successive populations can 

provide a valuable insight into how algorithms work, preference was given to the following 

test functions of two variables:   

2.4.1 Test Problem 1- the Sickle function  

This is a slightly modified version of problem G6 in reference [13] which requires 

minimizing the function:   

( ) ( )32
3

121 1020),(F −+−= xxxx  (2.9) 

subject to:   

( ) ( )
( ) ( ) 081.8265g

010055g
2

1
2

12

2
2

2
11

≥+−−−−=

≥−−+−=

xx

xx
 (2.10) 

and the side constraints:   
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5.1514and100 21 ≤≤≤≤ xx  (2.11) 

In its original form [13], the side constrains were over 10 times wider, making the ratio 

between the feasible and the infeasible spaces very small and therefore a starting feasible point 

hard to find.  The global minimum point is located at x1=14.095 and x2=0.84296 for which the 

function value is 6961.8139 and both constraints are active.  The maximum point, also double 

bounded, is located at x1=14.095 and x2=9.15704 and equals -1206.13556.  As visible from the 

plot in Fig. 2.1, the feasible domain of this function is not convex.   

2.4.2 Test Problem 2 - Koziel and Michalewicz G6 function   

This second problem [13] requires finding the maximum point of:   

( ) ( )
( ) 3

221

2
3

1
21

2sin2sin
),(F

xxx
xx

xx
⋅+

π⋅π
=  (2.12) 

 

Fig. 2.1  Plot of test objective function 1 – the Sickle function.   
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subject to:   

( ) 014g

01g

2
2

12

2
211

≥−+−−=

≥−−=

xx

xx
 (2.13) 

and the side constraints (modified as compared to the original form in [13] for the same reason 

as before):   

1.29.0and2.52.3 21 ≤≤≤≤ xx  (2.14) 

This multimodal function has its global maximum at x1=1.24539 and x2=4.2425 and equals 

0.09582504.  The global minimum is located at x1=1.24492 and x2=3.74154 where the function 

value is 0.10363448.  Both the global minimum and the global maximum points are 

unbounded i.e. they are located inside the feasible domain (Fig. 2.2).   

 

Fig. 2.2  Plot of test objective function 2 - Koziel and Michalewicz’s G6 function.   
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2.4.3 Test Problem 3 - Keane’s function   

The third test problem, due to Keane, also listed as problem G2 in [6], requires minimizing 

the function:   

∑
∏∑

=

==

⋅

−
=

n

i
2
i

n

i i
n

i i

n
xi

xx
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1

1
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1

)(cos2)(cos
)...(F  (2.15) 

subject to:   
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n

i i

x

nx
 (2.16) 

and to the side constrains:   

nixi ≤≤≤≤ 1for100  (2.17) 

This is a highly multimodal function that has its global minimum constrained by g2.  For n=2 

its optimum equals 0.36497974 and occurs for x1=1.60086 and x2=0.468498.  According to [6], 

 
Fig. 2.3  Plot of test objective function 3 - Keane’s function with n=2.   
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for n=20 the minimum value found so far equals 0.8036.   

2.5. Numerical Results 

A set of numerical experiments were conducted to test the capabilities of the UMDA and 

PBIL algorithms in association with the constraint handling techniques described above and 

the results are summarized in Tables 2.1-3.   

No attempt was made during these experiments to fine tune the N, M or w parameters so 

that performances are maximized (in all cases N=50, M=25 and w=1 while the stopping 

criteria was limiting the maximum number of function evaluations to NF=5000).  The main 

purpose of these numerical experiments was to identify promising combinations of Estimation 

of Distribution Algorithms and constraint handling techniques, their potential for improvement 

1x

x1

x2

-5611.7

-5132.5

 
Fig. 2.4  Superimposed plots of the points generated during one run of E-UMDA + Repair 1 (top) and 

UMDA + 1K-Penalty (bottom) algorithms on Test Problem 1.   
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and reasons why they performed or did not perform well.   

Problem 1 has a non-convex feasible space with only one minimum and one maximum 

(both double constrained).  It is therefore not surprising that the elitist E-UMDA and E-PBIL 

algorithms with line-search repair performed well.  This is because only feasible individuals 

were sampled during the search and the monotonicity of the function favored a constant 

downhill migration of the population.   

This is also illustrated by Fig. 2.4-top where all individuals generated during one run of the 

E-UMDA + Repair 1 algorithm (less the intermediate points occurring during line searches) 

are plotted.   

Table 2.1  Results obtained for 500 runs of Test Problem 1 for M=50 and N=25 (known global 

optimum: -6961.81) 

Algorithm Constraint handling 
technique Best result Average result Worst result 

E-UMDA Repair 1 -6945.91 -5607.47 -2997.05 
E-PBIL Repair 1 -6943.65 -5763.21 -3509.77 
UMDA Repair 1 -6939.16 -5553.78 -3372.03 

E-UMDA vK-Pen. -6930.03 -5104.47 -2480.90 
E-PBIL vK-Pen. -6912.24 -5159.63 -2249.93 
PBIL 1K-Pen . -6911.18 -5076.39 -2585.59 

E-PBIL 1K-Pen . -6903.78 -5244.17 -3117.43 
E-PBIL DK-Pen. -6895.40 -5184.25 -2617.83 
PBIL Repair 1 -6892.11 -5661.05 -3373.31 

E-UMDA Repair 2 -6881.54 -4978.97 -1454.95 
UMDA Repair 3 -6874.920 -4135.440 -1321.91 
E-PBIL Repair 2 -6871.597 -5018.764 -1973.91 
PBIL Repair 2 -6870.774 -5050.324 -1636.22 

UMDA Repair 2 -6869.215 -5008.144 -1862.65 
E-UMDA DK-Pen. -6860.034 -5068.846 -1542.06 
UMDA DK-Pen. -6857.924 -5092.668 -2886.64 
PBIL vK-Pena. -6847.324 -5120.544 -2624.04 

E-UMDA 1K-Pena . -6836.38 -5048.02 -2218.117 
E-PBIL Repair 3 -6821.19 -4113.49 -1286.33 

E-UMDA Repair 3 -6813.79 -4148.39 -1279.73 
PBIL Repair 3 -6763.21 -4187.59 -1396.38 

UMDA vK-Pen. -6755.85 -5095.72 -1776.14 
PBIL DK-Pen. -6677.15 -5132.26 -2123.77 

UMDA 1K-Pen. -6674.55 -5125.19 -2680.86 
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The runs illustrated by the plots in Figs. 2.4 (and also in Figs. 2.5 and 2.6) were considered 

representative in that the best fitness found during the respective searches were very close to 

the average value recorded in Tables 2.1-3  (for Fig. 2.4 these fitness values were 5612 vs.  

5607 and 5133 vs. 5125).   

The same frames plotted superimposed in Fig. 2.4-up were animated and are available as 

animated GIFF files from the author or online at [14].  From these animations it can be seen 

that the best fit individual emerged (most likely following a repair operation) during the 

second generation and was preserved unchanged all the way to the end of the run.  As the 

search progressed, the rest of the population slowly moved toward this best fit individual.   

The animations also reveal that imposing the repair search to be performed along the line 

pointing in the direction of the closest feasible individual the displacement of the population 

parallel to the boundary of the feasible space is significantly diminished.  One remedy towards 

x1

x2

0.09074

0.07481

x1

 
Fig. 2.5  Superimposed plots of the points generated during one run of E-PBIL + vK-Penalty (top) and 

UMDA + Repair 3 (bottom) for Test Problem 2.   
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an increased exploration of the areas parallel to the boundaries of the feasible space (other than 

changing the line-repair strategy) can be to force (directly or indirectly) the components of the 

standard deviations vector to stay large during the first few generations.   

As visible from Fig. 2.4–bottom, the UMDA algorithm with 1K-Penalty (that was ranked 

last) had difficulties in maintaining a pool of feasible individuals in the population and was 

therefore unable to direct the search toward promising areas of the design space.  The animated 

GIFF files generated using the same data as for Fig. 2.4-bottom also shows that the actual 

solution (labeled 5132.5) was generated during early generations, but no further exploration 

was performed in that same area [14].   

Table 2.2  Results obtained for 500 runs of test Problem 2 for M=50 and N=25 (known global optimum: 

0.095825).   

Algorithm Constraint handling 
technique Best result Average result Worst result 

E-PBIL vK-Pen. 0.095825 0.090999 0.019106 
E-PBIL DK-Pen. 0.095825 0.090982 0.018469 
E-PBIL 1K-Pen. 0.095825 0.090354 0.029143 
E-PBIL Repair 1 0.095825 0.089778 0.025175 
E-PBIL Repair 2 0.095825 0.089659 0.028708 

E-UMDA vK-Pen. 0.095825 0.089549 0.027295 
E-UMDA 1K-Pen. 0.095825 0.089199 0.037292 
E-UMDA DK-Pen. 0.095825 0.088951 0.027408 
E-UMDA Repair 2 0.095825 0.088107 0.025067 

PBIL DK-Pen. 0.095825 0.086992 0.022776 
UMDA vK-Pen. 0.095825 0.086738 0.019890 
PBIL vK-Pen. 0.095825 0.086693 0.026722 

UMDA DK-Pen. 0.095825 0.086221 0.027787 
UMDA 1K-Pen. 0.095825 0.086214 0.021905 
PBIL 1K-Pen. 0.095825 0.086196 0.024969 
PBIL Repair 1 0.095825 0.086046 0.023640 
PBIL Repair 2 0.095825 0.085759 0.036746 

UMDA Repair 2 0.095825 0.085409 0.024786 
E-PBIL Repair 3 0.095825 0.082726 0.001645 

E-UMDA Repair 1 0.095825 0.082144 0.024559 
UMDA Repair 1 0.095825 0.079079 0.018287 

E-UMDA Repair 3 0.095825 0.078868 0.013925 
PBIL Repair 3 0.095825 0.075557 0.012989 

UMDA Repair 3 0.095825 0.074724 0.016606 
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Problem 2 has its global maximum unbounded, and therefore the constraint handling 

technique employed has less effect upon the evolution of the population after several 

generations have passed, when more important become the hill climbing capabilities of the 

basic EDA employed.  The elitist EDAs particularly the E-PBIL algorithm exhibits such traits 

and consequently performed better (although the favorable effect of a wider initial sampling of 

the landscape proved beneficial as the results in Table 2.2 show).   

x1

x2

-0
.2

39
1 9

-0
.1

96
9 6

 

Fig. 2.6  Superimposed plots of the points generated during one run of E-PBIL + Repair 1 (top) and 
E-UMDA + DK-Penalty (bottom) algorithms over Test Problem 3 with n=2.   
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Least performers were the non-elitist EDA algorithms using cloning repair (and repair in 

general).  Repair operations have the effect of reducing the variability of the initial populations 

by forcing its individuals inside the feasible space.   

Figs 2.5-top and the animated GIFF file available on [14] show the ascending path 

followed by the successive populations in case of the E-PBIL+νK-Penalty algorithm leaded by 

the best fit individual.  However, because of the standard deviations becoming too small, this 

ascent ended prematurely, suggesting again that the standard deviation should be kept at larger 

values longer periods of time.  On the other hand, as Fig. 2.5-bottom shows, the run of the 

Table 2.3  Results obtained for 500 runs of Test Problem 3 with N=2 for M=50 and N=25 (known 

global optimum: 0.3649797).   

Algorithm Constraint handling 
technique Best result Average result Worst result 

E-PBIL Repair 1 -0.3649797 -0.239162 -0.133003 
E-PBIL Repair 2 -0.3649797 -0.235662 -0.109429 
E-PBIL 1K-Penalty -0.3649796 -0.224695 -0.109429 
E-PBIL Repair 3 -0.3649793 -0.223351 -0.107983 
E-PBIL DK-Penalty -0.3649722 -0.226574 -0.109418 
E-PBIL vK-Penalty -0.3649683 -0.227550 -0.133230 
PBIL Repair 1 -0.3649352 -0.211658 -0.109323 

E-UMDA Repair 1 -0.3639721 -0.206205 -0.101459 
UMDA Repair 2 -0.3619513 -0.205715 -0.110912 
PBIL vK-Penalty -0.3606485 -0.199515 -0.101611 

E-UMDA vK-Penalty -0.3600499 -0.200429 -0.109429 
UMDA Repair 3 -0.3544603 -0.192459 -0.099642 
UMDA Repair 1 -0.3529160 -0.203255 -0.100988 

E-UMDA Repair 2 -0.3528012 -0.207182 -0.117033 
UMDA 1K-Penalty -0.3526836 -0.200672 -0.121185 
PBIL Repair 3 -0.3525017 -0.196533 -0.099643 
PBIL DK-Penalty -0.3505644 -0.20042 -0.108292 
PBIL Repair 2 -0.3493383 -0.208814 -0.104155 

E-UMDA Repair 3 -0.3474485 -0.196391 -0.108942 
E-UMDA 1K-Penalty -0.3461925 -0.200399 -0.109136 
UMDA vK-Penalty -0.3434922 -0.195404 -0.114145 
UMDA DK-Penalty -0.3397125 -0.199832 -0.103815 
PBIL 1K-Penalty -0.3231532 -0.197422 -0.105956 

E-UMDA DK-Penalty -0.3087370 -0.197603 -0.107092 
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UMDA algorithm with clone repair was trapped in the neighborhood of a bounded local-

optima without being able to advance towards it.   

Problem 3 was more difficult to solve due to the global optima being constrained and of 

the numerous local optima.  Again the elitist E-PBIL algorithm performed better (see 

Table 2.3), this time in association with a line-search and crossover infeasible individual repair 

(remember that crossover repair is a variant of the line-search repair).  It becomes evident that 

the favorable hill climbing characteristics of the E-PBIL algorithm were augmented by the 

boundary exploration capabilities provided by the repair method.   

As happed before, and visible from Fig. 2.6-up and the animated GIFF file available on 

[14], the search lost momentum due to a premature reduction to very small values of the 

components of the standard deviation vector.   

For this third test problem, the lowest ranked was the elitist UMDA algorithm coupled with 

a DK-Penalty.  The sample run shows an interesting behavior, in which the best fit individual is 

trapped around of a local optima and the rest of the population swarms around another slightly 

lower optima.  After viewing the animated files generated with the same data as in Fig. 2.6 

below, it becomes evident that the swarming can continue forever because the standard 

deviation can neither go to zero nor increase sufficiently so that the swarming population can 

join with the best fit individual trapped on the neighboring local optima.   

2.6 Conclusions 

Two Estimation of Distribution Algorithm viz the Univariate Marginal Distribution 

Algorithm and a Population Based Incremental Learning Algorithm were tested in both elitist 

and non-elitist variants on solving 3 benchmark objective functions with constraints.   
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These test suggest that the function’s local landscape and the way the current population is 

distributed in this landscape should not dictate alone the probability distribution used in 

generating the new individuals.  When normal distributions are used, forcing the standard 

deviation values to remain relatively large during a longer period of the search is likely to 

improve performance by avoiding “sinking” the population prematurely into a local optimum 

area.  Another phenomenon that can be avoided by controlling the standard deviation values is 

the localized swarming in case of elitist algorithms applied to multimodal functions (as it was 

the case of test problem 3), when the best fit individual is trapped on one local optima while 

the rest of the population swarms around a neighboring lower optima.   

Conversely, the same as the gradient value can be used as stopping criteria in first-order 

optimization algorithms, standard deviation values can be used as stopping criteria in EDAs.  

This was suggested by some of the numerical examples investigated, where part of the search 

was spent generating (almost) identical individuals due to standard deviation vector having its 

components approaching zero.   
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CHAPTER 3. VISUALIZATION OF MULTIVARIABLE OBJECTIVE FUNCTIONS BY 

PARTIAL GLOBAL OPTIMIZATION 

Functions of the type z=F(x1,…,xn) where F are single-valued functions of n real variables 

cannot be visualized directly due to our inability to perceive dimensions higher than three.  

However, by projecting them down to 2 or 3 dimensions many of their properties can be 

revealed, like monotonicity, the existence of more than one minimum or maximum, or in case 

of constrained functions, the activity of the constrains.  In this chapter a method to generate 

such projections is proposed, requiring successive global minimizations and maximizations of 

the function with respect to n-1 or n-2 variables.  A number of numerical examples are given to 

show the usefulness of the method, particularly for optimization problems where there is a 

direct interest in the minimum or maximum domains of objective functions.   

3.1. Introduction 

In our attempt to analyze increasingly complex problems, visualization of 

multidimensional (multivariate) data can play an important role in both problem formulation 

and solution discovery.  Therefore it continues to be an appealing research subject for many 

disciplines, including mathematics, statistics, computer graphics and operations research [10] 

[13] [22] [23].  The numerous visualization methods known so far are applicable to some but 

not all multidimensional objects encountered in sciences and engineering like: experimentally-

obtained scattered data [3] [9] [28], hypergeometries [5] [6] [20] [21] [29] [40] [46], analytical 

functions [7] [14] [15] [26] [39] and inspection of the design space in optimization problems 

[16] [24] [25] [36] [42] [43] [44], artificial neural network design [12] [19] [33] [38] [41], etc.   
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The subject of the present chapter is the visualization of z=F(x1,…,xn) hypersurfaces, 

where F are single-valued functions of n real variables, possibly (but not limited to) objective 

functions encountered in optimization problems.  As will be further seen, one benefit of the 

proposed approach is that once the plots are generated, they do not require a dynamic 

interactive environment for their display, thus the information therein becoming very easy to 

disseminate.   

Functions of one variable F(x) can be straightforwardly represented in 2D space, where one 

dimension can be associated with the variable and the other dimension with the function value.  

As an extension, functions of two variables F(x1, x2), can be visualized as families of curves 

x1=constant, x2=constant or z=constant (also called level-curve or contour-plot diagrams).  

Another possibility is to plot their surfaces z=F(x1,x2) in parallel or perspective projection, 

which is equally intuitive since in the 3D Euclidean space, two dimensions can be associated 

to the variables and the third dimension to the function value.   

Functions of three variables F(x1,x2,x3) can also be represented graphically, an example 

being the triangular plots of the relative proportions of three ingredients in a mixture [11] 

(although the three variables are not independent because the proportions sum must be unity).  

Another possibility is to scan two of the variables, for example x1 and x2, within some prescribed 

limits, while maintaining constant the third variable, and generate a 3D surface or level-curve 

diagrams.  If a number of such representations are generated for successive values of x3, they can 

be displayed as computer animations where time has the role of the third variable.   

For the visualization of functions of more than three variables the use of color plots and of 

suitable interactive computer-graphics software (possibly in a virtual reality setup) is the 

standard approach.  Such software generates slices through the function’s (hyper)surface [15], 

[42], [43], and although the use of computers and of Web-based hypertexts, like for example 
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[46], are increasingly common, the employed graphics lose effectiveness when viewed as still 

images.   

In case of projection techniques (as well as of parallel coordinates), once the images are 

generated, they do not require the availability of a computer and of the appropriate software 

for visualization of the respective hyperobjects.  Therefore such visualization methods are 

more appropriate when the end-results are supposed to be printed on paper in a book or a 

journal.  However, so far, they were only applied to multidimensional geometries with 

simplifying characteristics: hypercubes, hyperspheres, and quadratic and cubic hypersurfaces 

[5] [6].  In the case of the parallel coordinates, the limitation to simple geometries is even more 

severe (points, lines and collection of such); moreover, the graphic representations obtained 

are strongly dependant on the order in which the parallel coordinates are labeled [10] [20] [21] 

[23].   

3.2 Description of the Proposed Visualization Method 

The main idea of the proposed visualization method is to perform global 

minimizations/maximization of the function with respect to all but 1 or 2 of the variables (a 

process further called n-1 or n-2 partial-global optimization), and to generate an appropriate 

number of point-sets that will be further used for producing 2D or 3D graphical 

representations.  Earlier work of Papalambros and Wilde [30] employed partial minimizations 

but with respect to only one of the variables, while the remaining n-1 variables have been 

assigned arbitrary fixed values (and without resorting to any graphical representation), for the 

purpose of inspecting the design space of objective functions and studying their constraint 

activity.  There are also coincidental similarities between the proposed technique and the 
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Maximum Intensity Projection (MIP) method used in medical imaging [27], which projects the 

maximum intensity values in a 3D volume data to a 2D plane.   

Specifically, lets consider a multivariate function F(x1,…,xn) and some chosen variables’ 

domains xi∈[ximin,...,ximax] (i=1..n, n≥2) (not explicitly side constraints of an optimization 

problem).  One of the variables, for example x1, can be scanned at a constant step within the 

interval [x1min,...,x1max] and a global minimization of F(x1,…,xn) performed at each step with 

respect to the remaining variables x2...xn; this partial-global-minima function will be further 

symbolized as F↓2..n(x1) while the symbol F↑2..n(x1) will be used for its partial-global-maxima 

function counterpart.  In turn, x1 will be named scan variable while the remaining x2...xn will 

be named search variables.   

The successive 2D points obtained (x1, F↓2..n(x1)) with x1min ≤ x1 ≤ x1max, can be plotted as a 

continuous curve on a two-dimensional graph.  In a concise formulation this is equivalent to 

graphing the following function:   

njxxx

xxminglobalx

jjj

nn

...2with   tosubjected

)...(F)(F

maxmin

1x...x1..2
n2

=≤≤

=↓  (3.1) 

which, as will be further shown, is the lower-bound of the 2D projection of function’s 

hypersurface.  Similarly, the 2D projection of the upper-bound of the same hypersurface 

results by plotting the following function:   

njxxx

xxmaxglobalx

jjj

nn

...2with tosubjected

)...(F)(F
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=≤≤

=↑  (3.2) 

The total number of plots that can be generated by considering various scan variables in the 

above equations (3.1) and (3.2) is equal n, the number of variables of the objective function.   

In order to project the given hypersurface down to 3D, two of the function’s variables, for 

example x1 and x2, can be considered scan variables within the intervals [x1min,...,x1max] and 
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[x2min,...,x2max], and the following partial-global minima and partial-global maxima functions 

defined:   

njxxx

xxminglobalxx
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)...(F),(F

maxmin

1x...x21..3
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These functions can be plotted as level-curve diagrams or projected 3D surfaces, either 

separate or both on the same graph.  When plotted in pair, the total number of graphs that can 

be generated by considering all possible combinations of scan and search variables equals 

C(n,2)=n(n-1)/2.   

Projecting (hyper)surfaces down to 1D through global minimization and maximization is 

an intuitive processes as follows:  Functions of any number of variables (1, 2 or more) can be 

projected on the z-axis (the function-value axis) by projecting infinitely many points on the 

function’s (hyper)surface on this axis.  As shown in Fig. 3.1 however, a substitute operation is 

to project onto the z-axis only the global minimum and maximum points.  Obviously such 1D-

projections are of limited benefit as they are equivalent to providing the actual numerical 

values of the global minimum and global maximum.  They are important only in that they offer 

an intuitive starting ground for understanding more complex representations that make use of 

equations (3.1-4) above.   

In the following paragraph it will be shown how z=F(x1, x2) surfaces can be projected from 

3D down to 2D by performing repeated partial-global minimizations and maximizations.  The 

process will be further extended to projecting hypersurfaces or functions of more than two 

variables down to 3D or to 2D.   
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3.3 Numerical Examples 

Example 1: In order to pave the way to higher dimensions and to highlight the benefits 

and limitation of the proposed visualization method, the following multimodal function of two 

variables will be considered first:   
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This function, known as MATLAB “peaks,” is obtained by translating and scaling Gaussian 

distributions.  It has 3 minimum and 3 maximum points as summarized in Table 3.1, of which 

the one labeled min 1 is dominated by the other points of extrema and therefore harder to 

identify.   

Traditionally, such a function of two variables can be visualized in several ways (see 

Figs. 3.1 through 3.4) and its multimodal characteristics revealed.   

x 1 x 2

F1
(x

 ,  
x 

 )
1

2

 

Fig. 3.1  MATLAB “peaks” function shown as a 61×71 points mapped on an opaque surface.  Projecting 

all these points on the vertical axis is equivalent to projecting only the global minimum and maximum 

on the same axis.   
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Because they relate the most to the subject of this research, the projections on the 

x1=constant or x2=constant vertical planes, viz. the front-view and the side-view plots of the 

function’s surface will be discussed further (Figs. 3.2 and 3.3).  One way to generate such 

views is to project on the aforementioned vertical planes, equally-spaced “slices” through the 

function’s surface.  These successive slices can be oriented parallel (Figs. 3.2-a and b) or 

perpendicular (Figs. 3.3-a and b) to the projecting plane.  In the former case, for both the front 

views (Figs. 3.2-a and b) and back views (not exemplified), the invisible lines can be 

eliminated using a suitable hidden line algorithm.   

About the same amount of information as the parallel contour plots in Figs. 3.2-a and b 

(but rather without the hidden lines removed) can be obtained by projecting, on the same 

vertical planes, a number of points on the function’s surface sampled in a regular k1×k2 grid 

(Figs. 3.2-c and d).   

When the sampling points along a “slice” perpendicular to the projection-plane are 

infinitely numerous, such a distinction cannot be made and representations like those shown in 

Figs. 3.3-a and b are obtained.  These plots bear exactly the same amount of information as the 

lower-bound and upper-bound representations in Figs. 3.3-c and d.  What is important from the 

standpoint of the proposed visualization method is that such representations can be obtained by 

plotting together the following partial-global-minima and partial-global-maxima functions:   

Table 3.1  The maximum and minimum points of MATLAB “peaks” function.   

 x1 x2 F2(x1,x2) 
max 1 -0.00932 1.58137 8.10621 

max 2 -0.46002 -0.62920 3.77658 

max 3 1.28568 -0.00485 3.59249 

min 1 0.29645 0.32020 -0.06494 

min 2 -1.34740 0.20452 -3.04985 

min 3 0.22828 -1.62553 -6.55113 
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for Fig. 3.3-c, and of  
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for Fig. 3.3-d, with the benefit that a lesser number of function evaluations will be required, 

depending on the effectiveness of the optimization algorithm employed.  For functions of more 

than 2 variables, a grid-search approach as previously described requires k1×k2×…×kn function 

evaluations, which for n>3 becomes prohibitively large and more advanced global-optimum 

searching techniques should be used.   

The combined graphs of the partial-global minima and partial-global maxima functions of 

MATLAB “peaks” are also shown in Fig. 3.4, below and to the left of the level-curve plot.  In 

this same figure, superimposed to the level-curve diagram of the original function, the values 
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Fig. 3.2  Side views of F1(x1,x2) shown (a) as curves of constant x2, (b) as curves of constant x1 and (c) 

and (d) as point clouds mapped on a transparent function surface.   
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of the search variables as they result when evaluating F1↓2, F1↑2, F1↓1 and F1↑1 functions are 

also plotted.  These points (noted throughout this dissertation x1↓,..xn↓ and x1↑,..xn↑) together 

with the respective function-values represent 3D curves mapped on the z=F1(x1,x2) surface, 

which project on the x1=constant or x2=constant vertical planes as the graphs of the partial-

global minima and partial-global maxima functions in equations (3.6) and (3.7).  These 

mapped curves or mapped surfaces in case of 3D projections, will be called (projected) upper-

bound and (projected) lower-bound paths.   

A fairly simple computer program written in C language that can be used for generating the 

values required for plotting the “silhouettes” in Figs. 3.3-c and d and of the corresponding 

upper/lower-bound paths is given in Appendix 1.  The two nested for-loops therein (where the 

inner one does a grid-search) are the numerical equivalents of the plots in Fig. 3.2-a and b, 

with the difference that the grid-search records only the maximum and minimum heights along 

every slice through the function’s surface.  By further nesting for loops, this simple algorithm 
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Fig. 3.3  Side views of F1(x1,x2) shown (a) as lines of constant x1, (b) as lines of constant x2 and (c) and 

(d) as upper-bound and lower-bound contours only.   
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can be extended to generate data for plotting functions of more than two variables, but its 

simplicity is quickly surpassed by the unacceptable long computation time (though it can be 

the starting point for more elaborate implementations).  It has an intrinsic advantage, though, 

that is both the partial global minimum and the partial-global maximum are found during the 

same iteration.   

A number of conclusions can be already drawn following this two-variable-function 

example:   

1) As a consequence of specifically performing partial-global minimization and 

maximization of the function, the global minimum and global maximum will always be visible 

x2

F1     (x )↓↑1 2
F1

   
  (

x 
)

↓↑
2

1

x1

 

Fig. 3.4  Contour plot of MATLAB “peaks” function (middle) and plots of partial global minima and 
maxima functions F1↑↓2(x1) and F1↑↓1(x2).  Also shown, superimposed on the contour lines, are the 
graphs of x2(x1) and x1(x2) as they result when evaluating F1↑↓2(x1) and F1↑↓1(x2) (the upper-bound and 
lower-bound paths).  Notice how some of the jumps of these paths are associated with tangent 
discontinuities in the partial-global minima and maxima graphs.   



 

 36

on the diagram (provided that the domains of the variables are chosen such that they include 

this point).   

2) In the case of multimodal functions, it is essential that partial-global minimizations and 

maximizations be performed, and not some local searching operations, in order to obtain 

correct projections of the respective functions.  This requirement makes a difference between 

the present (hyper)surface visualization method and the design studies called explore optimum 

plots in [31], employed to show how the optimum modifies as the values of one or two of the 

design variables are changed.   

3) If the function is multimodal, the existence of more than one minimum/maximum point 

will be revealed, although the total number of minimum and maximum points will not be 

always visible on the diagram, since the process has an upper-leveling and a lower-leveling 

effect - see the min 3 point in Table 3.1 or the Ackley-function example later in this chapter.   

4) The precision with which the minimum and maximum point(s) are shown on the graph 

is dependent on the resolution with which the scan variable interval(s) has been sampled, and a 

tradeoff must be made between the resolution of the plot and the number of partial 

optimizations required.   

5) The fact that a function is multimodal can also be disclosed by the “jumps” in the 

upper-bound and lower-bound paths, of which some, but not all such “jumps,” can be 

associated with tangent discontinuities of the partial-global minima and partial-global maxima 

graphs.  Therefore these upper and lower-bound paths can provide additional information 

about the properties of the function to be visualized, and should also be recorded and plotted.   

6) The appearance of various projections of the function’s (hyper)surface is dependent on 

the limits imposed of the search variables during the partial-global-optimization processes, as 

well as on the limits of the scan variables.  On the other hand, by changing these limits, further 
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insight into function’s properties can be revealed in that certain local minima and local 

maxima (previously overshadowed by more dominant extrema) can become visible.   

Example 2: The first example of a multidimensional object that can be visualized by 

partial optimization is that of a unit hypersphere centered at the origin:   

01x
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Because of its simplifying characteristics, the projection to the space of any three of its 

variables will look the same (as will be seen shortly, no graphical representation will be 

required, the projections being easy to derive in analytical form and to further interpret).  

Consider for example the 3D space of x1, x2 and x3.  In order to obtain the projection of the 

above hypersphere onto this space, the following explicit function will be employed:   
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obtained by separating one of the variables (viz. x1) in equation (3.8).  Without resorting to any 

numerical optimization algorithm, it is easy to recognize that the corresponding partial-global 

minima and partial-global maxima functions:   
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can be reduced to the following analytical expressions:  
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which, as expected, are unit spheres centered at the origin.   

The projection of the same hypersphere (3.8) down to 2D, say to the space of x1 and x2, 

can be done in two ways: One is to start from the same explicit function (3.9) and plot the 

corresponding partial-global minima and partial-global maxima functions of one-variable:   
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and  
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The other approach is to project from 3D down to 2D the partial-global minima functions of 

two variables already available in equations (3.12) and (3.13).  Either way the conclusion 

remains the same that is a unit hypersphere projects down to 2D as a unit circle:   

 x1)x(2F 2
22..3 −±=↓↑ n . (3.16) 

This is an intuitive result (although not in full agreement with [5]) which should strengthen 

ones confidence in the validity of the proposed method.   

Example 3: Another example of a multivariate function to be visualized by partial 

optimization is the generalized Rosenbrock’s function [45]:   
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better know in its n=2 form under the name of “banana” function - a classic test objective 

function used since the early days of computational optimization in assessing the performance 

of optimization algorithms [34].  It will be further shown that the highly acclaimed, narrow, 

parabolic-shaped valley that makes “banana” function difficult to minimize by steepest-

descent-type algorithms, is also present in its multivariate form, and that the same valley 

harbors the global minimum point x1=x2=…xn=1.   

In order to investigate the properties of function (3.17) via 3D projections, the following 

partial-global extrema functions have been defined:   
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Fig. 3.5  Projection of the generalized Rosenbrock’s function of 5 variables on the 3D space 
(x1,x2,z) for -1.5≤ xj ≤1.5 (j=1..5) together with the graphs of the upper-bound and lower-bound 
paths x3↓(x1,x2), x4↓(x1,x2), x5↓(x1,x2) and x3↑(x1,x2), x4↑(x1,x2), x5↑(x1,x2).   
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Their plots for the case of n=5 and -1.5[xj[1.5 (j=1..n) together with the corresponding graphs 

of the minimum and maximum recorded values of the search variables (the upper-bound and 

lower-bound paths) x3↓↑, x4↓↑ and x5↓↑ are given in Fig. 3.5.  The subroutine used for 

evaluating the respective partial-minima/maxima functions combines a 35×35×35 grid-search 

step followed by Powell’s Direction Set Algorithm [32].   

In reference [37] are available the plots of the remaining nine 3D projections of 

generalized Rosenbrock’s function with n=5, over the same interval [-1.5, 1.5] of the variables.  

All these graphs confirm the existence of parabolic valley along which the global minimum 

point x1=…x5=1 is located, similar to the n=2 variant of the function.   
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Fig. 3.6  Same graphs as in Fig. 2.5 generated for the search variables x3, x4 and x5 restricted to the 

interval [0.5,1.5].   
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Since away from this global minimum point the function is convex and monotonically 

increasing, all partial-global maxima occur for the least admissible values of the search 

variables (i.e. -1.5).  However, in spite of the recursive association of the variables in equation 

(3.17), the 2D upper-bound and lower-bound paths do not exhibit a repeating pattern.   

It is therefore to be expected that for different intervals of the search variables, the same 

function will project differently down to 3D or to 2D.  To exemplify this, the graphs in Fig. 3.6 

have been produced for the case of the search variables being restricted to a smaller interval, 

viz. [0.5, 1.5].  The changes are surprising in that the 3D projections of Rosenbrock’s function 

of 5 variables exhibits not one but two minima when subject to the mentioned side constraints.   

Example 4: Another example of a multivariate function considered was Bäck’s 

generalization [4] of Ackley's function [1]:   
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Fig. 3.7  Surface of Ackley’s function of two variables.   
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This is a highly multimodal, test objective function commonly used in rating Genetic 

Algorithms.  Irrespective of n, its global minimum equals 0, and occurs for x1=…xn=0.  A plot 

of F4 for n=2 is shown in Fig. 3.7.  It will be shown that the same overall appearance is also 

present in the 2D and 3D projections of Ackley’s function of more than 2 variables.   

As mentioned earlier, functions of 3 variables can be visualized through animations of 

plots generated for successive values of the third variable being kept fix.  If the respective 

surfaces are represented on the same graph as shown in Fig. 3.8 for the case of Ackley’s 

function with n=3, then it becomes obvious that the lower and upper envelopes of these 

surfaces can be obtained by retaining only the minimum and the maximum values of the 

function along the verticals through every (x1, x2) grid point.  This is another example of the 

proposed visualization technique confirming known results and being complementary to 

existing approaches.   

In order to further inspect the propertied of function (3.20), the following partial-global 

minima and partial-global maxima functions:   
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have been plotted over [-6, 6]×[-6, 6] for the case of for n=10 (Figs. 9-a and b).  The 

subroutine used in the evaluation of F4↑3..n and F4↓3..n combines a standard Genetic Algorithm 

[4] followed by the same Powell’s algorithm.   
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The recorded values of the upper-bound paths have a sinusoidal variation as shown in 

Fig. 3.10 while the lower-bound paths are all equal x3↓=x4↓=…x10↓=0, irrespective of the 

values of the scan variables.  It is therefore safe to conclude that for any n and for any domains 

of the function’s variables that include the global-minimum point, the 3D projection of 

generalized Ackley’s function has the following analytical expression:   
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which explains the resemblance between the graph of F4↓3..n in Fig. 3.8-b and Ackley’s 

function of 2 variables in Fig. 3.7.   

 

Fig. 3.8  Superimposed frames of an animated representation of Ackley’s function of 3 variables with 
time corresponding to the third variable x3∈[-6..6].  The lower envelope of these surfaces correspond to 
x3=0, while the upper envelope is the result of the intersection of several of the upper surfaces.   
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Interesting results were further obtained by graphically displaying the one variable partial-

global minima function:   
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and partial-global maxima function:  
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Fig. 3.9  Surface plots of the partial-global maxima F4↑3..n (a) and partial-global minima F4↓3..n (b) 
functions of generalized Ackley function of 10 variables.   
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for different n between 1 and 10.  It is to be noticed that for n=1 equation (3.24) actually 

becomes the one dimensional variant of Ackley's function.  The graphs in Figs. 3.9 and 3.11-a 

reveal that as n increases, the upper and lower envelopes of the 3D and 2D projections of 

Ackley’s function smoothen and flatten.  Same as for the 3D projections, the one dimensional 

upper-bound paths have a sinusoidal variation of decreasing amplitude as n increases 

(Fig. 3.11-b) while the corresponding lower-bound paths are all constant and equal to zero.   

Furthermore, because F4(x1..xn) is symmetric with respect to all variables, it can be 

inferred that the projection of the function’s hypersurface onto any xi=constant vertical plane 

or on any (xi, xj, z) space will look the same;  conversely, for any scan variable(s), the partial 

minima functions in equations (3.23) and (3.24) will have the same analytical expressions.   

These conclusions, now evident, are however less obvious without performing the partial-

global minimizations and maximizations based projections shown above.   

Example 5: It is known that in optimum design, “the knowledge of a family of good 

solutions is far more important than obtaining an isolated optimum” [2].  Therefore objective 

function visualization is always desirable in the design process since it provide an overview 

x 2
x 1

x ↑j

 

Fig. 3.10  The upper-bound path xj↑(x1,x2) (j=3..10) corresponding to the diagram in Fig. 2.9-a.   



 

 46

upon the minimum or maximum domains and can reveal sensitiveness of the optimum found 

or if it is bounded.  Furthermore, parametric studies and constraint activity analyses when 

performed, are easier to interpret when the results are available in graphical form.  This last 

example, based on problem number 5 in reference [18], is intended to shows how constraint-

activity analyses can be perform through graphical representations of the partial-global minima 

of the given objective function.   

Consider the problem of minimizing:   
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The global optimum equals -5/6=-0.8333 and occurs for x1=x2=x3=1/3 for which constraint g4 

is active.  It is to be noticed that both the function and the constraints are symmetric with 

respect to the design variables, which will fortuitously limit the maximum number of 3D 

projection plots that need to be examined.   
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Fig. 3.11  Surface plot of the partial maxima and partial minima functions F4↑2..n and F4↓2..n for the case 
of n=10 (a) and plot of the corresponding upper-bound paths xj↑(x1) with j=2..10 (b).   
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Using Brent's algorithm [8], the partial-global minima diagram of F5 subject to g1, g2 and 

g3 only has been generated first (Fig. 3.12).  The graphs shows that F5 is monotonically strictly 

decreasing over the considered interval (Fig. 3.12-a), while the values of the search variables 

corresponding to these partial minima (the lower-bound paths) are constant and equal to 1 

(Fig. 3.12-b).   

When constraint g4 is applied, the appearance of 3D projection of the objective function 

changes (Fig. 3.13-a), and the same the appearance of the lower-bound paths (Fig. 3.13-b).  It 

is interesting to notice that the global optimum point appears inside the partial-global minima 

graph and not somewhere on the boundaries.  This is due to overshadowing and of the lower-

leveling/upper-leveling effect and the proposed dimension-reduction technique has.  Therefore 

care should be exercised when interpreting constraint-activity analysis plots of multivariate 

functions in that the change in location of the global optimum with the application/suspension 

of constraint(s) must be studied.  One should not expect to see the bounded optimum located 

on one of the boundaries of the projected multivariate function as in the case with constrained 

xi xj xi xj

F5↓ kx ↓
*

(a) (b)  

Fig. 3.12  Surface plot of the partial global minima function(s) F5↓k(xi,xj) with i,j,k=1..3 and i≠j≠k 
subject to g1, g2 and g3 (a) and of the corresponding lower-bound path(s) xk↓ (b).   
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objective functions of two variables.   

It is agreed that monotonicity analysis techniques [31] can provide similar results through 

inspection of the objective function and of the constraints.  When such techniques can be 

applied (if the function and the constraints are available in analytical form), the visualization 

technique proposed can be used for checking the results and for suggestively presenting them, 

particularly to an inexperienced audience.   

3.4 Conclusions 

A technique for visualizing z=F(x1,…,xn) hypersurfaces with direct application to 

inspecting the design space of objective functions and constraint-activity analyses was 

presented.  It requires repeated partial-global minimization and/or maximization of the 

function with respect to all but 1 or 2 of the design variables (the scan variables) and plotting 

(preferably on the same graph) the resulting global minima and global maxima and of the 

corresponding values of the search variables.   

xi xj x i xj

xk ↓

(a) (b)

F5 *
↓

 

Fig. 3.13  Surface plot of the partial global minima function(s) F5↓k(xi,xj) with i,j,k=1..3 and i≠j≠k 
subject to g2, g3, g4 and g5 (a) and of the corresponding lower-bound path(s) xk↓ (b).   
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Solving multiple-objective optimization problems using the ε-constraint method [17] can 

also benefit from the use of the visualization methods presented.  Similarly, what-if studies and 

worst-case-scenario analyses, commonly done in practice, can be performed and presented 

more suggestively using the proposed techniques.   

In Chapter 4 an optimum mechanism design example are presented, where the design 

space of the problem has been visualized through partial-global minimizations and some very 

useful characteristics of the respective mechanism revealed.  For this particular design 

problem, meaningful scan variables proved to be the actual x and y coordinates of the working 

plane of the mechanism.  Another example of application of the method is presented in 

Chapter 5, where the problem of finding the optimum number of teeth of an automatic 

transmission used in automobiles is aided by visualizing the design space of a mixed-integer 

optimization problem of eight variables.   

When performed upon some properly chosen test objective functions, the repeated partial-

global optimizations can be used to verify the speed and robustness of different optimization 

subroutines.  For example, if the resulting partial-global minima and partial-global maxima 

plots have noisy, irregular appearances with spikes or sudden discontinuities, it is likely that 

the optimization subroutine employed converged prematurely and its parameters must be 

readjusted or the subroutine discharged.   

On the other hand, if the tangent and curvature discontinuities on the partial-global 

minima/maxima graphs are not caused by premature convergences of the searching algorithm, 

then it is a sign that the original objective function is either non-smooth, multimodal or that 

some of the constraints change their activity as the scan variables change their values.  In such 

cases further investigations are required to make sure that the observed discontinuities are 
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accompanied by jumps of the upper-bound or lower-bound paths as discussed earlier with 

reference to Fig. 3.4.   

It has been shown that there are function visualization problems for which the respective 

partial-global minima and partial-global maxima can be derived in closed form, either by 

inspection or using the methods of calculus.  Other problems may require a significant 

computational effort (depending on dimensionality), while other problems can be insolvable.  

It is believed though that with the advent of very high-speed personal computers, and the 

intense research underway in the field of Evolutionary Computation, the number of practical 

problems that could benefit from the use of the proposed visualization technique should grow 

larger.  The fact that the procedure is well suited to parallel processing should also encourage 

its use in practice.   

A desirable implementation of the proposed visualization technique would be that in which 

the computer generates the data required to plot some (if not all) of the partial-global minima 

and partial-global maxima graphs to be interpreted later on, after a longer, unattended run of 

the computer.  Such a software implementation would necessary require the availability of 

several searching subroutines (either deterministic, stochastic or combinations of the two) the 

user can choose from the one considered best suited for the problem at hand.   

Finally it is mentioned that, although not a global optimization technique, the proposed 

method can have some merit with respect to global optimum finding, in that an n-variable 

problems can be reduced to repeated optimization of a function of n-2 variables.   
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CHAPTER 4. GENERAL SOLUTIONS FOR THE OPTIMUM DESIGN OF SLIDER-

ROCKER AND OSCILLATING-SLIDE ACTUATORS  

The planar slider-rocker and oscillating-slide mechanisms are widely used for converting 

the rectilinear displacement provided by a hydraulic, pneumatic or electric linear motor, into 

swinging motion of an output member rocker.  Using the visualization technique presented in 

Chapter 3 some new properties of these mechanisms are revealed, like the existence of well-

defined optimum solutions that occur in pairs and of particular geometric configurations 

associated with these optima.  For aiding the design process, parametric chart and performance 

charts are provided, which allow a rapid selection of the dimensions of the mechanism that 

generate an imposed displacement of the output member, while simultaneously ensuring 

maximum motion transmission efficiency.   

4.1. Introduction  

Slider-rocker and oscillating-slide mechanisms are the two inversions of the slider-crank 

mechanism with input translating members.  These mechanisms have very many applications 

in robotics, aerospace, automotive, agricultural and earth moving machinery etc.  The input 

member can be a hydraulic or pneumatic linear motor as well as a screw drive, rack-and-pinion 

or solenoid.  The output member can be attached to, or be the actual element of the landing 

gear of an aircraft, of the steering-system of a truck or tractor, a door that opens automatically, 

a robotic or excavator arm etc. [3].   

The synthesis of such a mechanisms for the generation of a prescribed swinging amplitude 

of the output member with a given displacement of the input member can be carried relatively 
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easy graphically, facilitated by the fact that mechanism’s loop is a simple triangle [6].  

However, obtaining a good motion transmitting efficiency is not guaranteed, and a trial-and-

error search must be carried out until the transmission angle (noted γ) remains in-between 

some minimum and maximum limits, usually greater than 45° and less than 135° or within 

90°±45° (an equivalent formulation which emphasizes that the transmission angle should vary 

as little as possible from the ideal value of 90°).  If a self-return of the output member is 

ensured due to weight or some other active forces, values of the transmission angle within the 

limits 90°±60° can be considered acceptable.   

In this chapter the capabilities of the slider-rocker and oscillating-slide planar mechanisms 

were investigated for the generation of a given maximum swing of the output member, while 

simultaneously ensuring a minimum possible deviation from 90° of the transmission angle.   

 

Fig. 4.1  Slide-rocker mechanism shown in two extreme positions (xC0, ϕ0) and (xC1, ϕ1).   
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4.2. Synthesis of the Slider-Rocker Mechanism 

Given a slider-rocker mechanism (Fig. 4.1), a ∆ϕ=ϕ1-ϕ0 displacement of the output 

member is required to be generated with a given displacement of the slider corresponding to 

joint C moving horizontally between the limits xC0 and xC1.  For the sake of generality, a unit 

value of the maximum stroke of the input member will be further considered (i.e. xC0-xC1=1), 

the actual dimensions of the real mechanism being obtained by multiplying the normalized 

link-lengths with the actual stroke of the chosen linear actuator.   

With the notations in Fig. 4.1 and for the two imposed relative positions of the input and 

output members (xC0,ϕ0) and (xC1,ϕ1), the synthesis equations of the mechanism are:   
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Substituting (4.2) into (4.1), and for yC=yC0=yC1 results:   
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By subtracting these two equations and substituting xC1=xC0-1 and ϕ1=ϕ0+∆ϕ, the normalized 

length of the rocker is obtained:   
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ϕ∆+ϕ−ϕ+ϕ∆+ϕ⋅−−ϕ
−−⋅

=  (4.5) 

For given values of the design variables ϕ0, xC0 and yC and for an imposed maximum 

displacement of the rocker ∆ϕ, the normalized lengths AB and BC (Fig. 4.1) can be 

determined using equations (4.5) and (4.3) respectively.   
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As can be seen, the problem has a triple infinity of solutions, and it is therefore possible to 

select the values of ϕ0, xC0 and yC such that supplementary conditions upon link length ratios, 

ground-joint relative disposition or limits of the transmission angle can be satisfied.  In the 

followings, only the last of these possible requirements will be consider i.e. the transmission 

angle γ to have a minimum deviation from the ideal value of 90° over the entire working range 

of the mechanism, so that good motion transmission efficiency is ensured.  For a current 

displacement xC of the piston, the angle γ can be calculated with:   

BCAB2
yxBCAB

)x(cos
2
C

2
C

22

C ⋅
−−+

=γ , (4.6) 

derived by applying Cosine Law in the ABC triangle, and in the right-angle triangle of 

hypotenuse AC built on the OX axis (Fig. 4.1).  Apart from the extreme positions, the 

configuration of the mechanism for which xC equals zero will also induce a critical value 

(maximum or minimum) of the transmission angle.  Therefore this third position must also be 

taken into consideration if joint C crosses the vertical axis OY.   

In order to find the configurations for which γ has minimum variation about 90°, the 

following min-max problem in the variables ϕ0, xC0 and yC has been defined:   
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 (4.7) 

where the output member stroke ∆ϕ=ϕ1-ϕ0 is considered known and γ is calculated with the 

above equation (4.6).  After several numerical experiments, it proved necessary to check that 

the vector loop ABC maintains the same orientation (i.e. the cross products AB0×B0C0 and 
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AB1×B1C1 have the same sign) during the working range of the mechanism.  If this 

requirement is not fulfilled, the two extreme positions cannot be attained without breaking the 

joints, and therefore the value of the objective function must be penalized in some way.  One 

can observe that for ∆ϕ approaching zero, the global minimum of F1(ϕ0, xC0, yC) also 

approaches zero, which correspond to γ(xC0)=γ(xC1)=90°.  For nonzero displacements ∆ϕ of 

the output member, the global minimum of F1 will correspond to the minimum possible 

deviation of the transmission angle γ from 90°.   

By using cosγ instead of the actual transmission angle in the expression of the objective 

function F1, the inverse cosine function is not repeatedly called, thus saving on CPU time.  

This is particularly beneficial when partial minima plots and design charts are generated as 

will be further explained.   

In order to study the properties of the objective function F1, a systematic inspection of its 

design space has been performed.  Using the method described in Chapter 2 of visualizing 

multivariate functions and hypersurfaces by partial-global optimization, a partial minima 

function in two variables has been defined:   
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⎝

⎛
ϕ=

ϕ
),y,x(1Fminglobal)y,x(1G 0C0C

0
C0C arccos  (4.8) 

where the global minima of one variable has been calculated using a grid search followed by 

Brent’s algorithm [2].  This function has been studied graphically and the level curve diagrams 

in Fig. 4.2 generated for some practical values of the output member stroke ∆ϕ.  These graphs 

reveal that the design space of objective function F1 is symmetric about the vertical line 

xC0=0.5.  Further investigation show that for any ∆ϕ value, there are two global optimum 

mechanism solutions with one the mirror image of the other relative to y=0 vertical line.   
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=150° =180°

=120° =135°

=60° =90°

 

Fig. 4.2  Contour plots of G1(xC0,yC) for different values of the output member stroke ∆ϕ (global optima 
are marked with a cross “+”).   
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For this reason, Table 4.1, where several global optimum slider-rocker mechanism solutions 

are gathered, only set of parameters is given, specifically only one set of ϕ0 values.   

Although for ∆ϕ=60° the partial global minima graph G1(xC0,yC) shows the existence of 

only one optimum (according to the next paragraph this is valid for any ∆ϕ<77°), in actuality 

they are two optima.  As explained in Chapter 2, this phenomenon is due to the fact that when 

projecting multimodal function from higher dimensions down to three dimensions, some 

minima or maxima can become obscured by other extrema located along the same projecting 

line.   

Since the slider-rocker mechanisms that generate large swinging amplitudes at the output 

member have many potential applications, for example as orientation mechanism for antennas, 

solar panels, surveillance cameras, spotlights etc. (Fig. 4.3), the particular cases of ∆ϕ=120° 

and ∆ϕ=180° swing angles of the output members will be discussed in more details.   

Table 4.1  Optimum slider-rocker dimensions for some common swinging angles ∆ϕ.  

∆ϕ xC0 yC AB BC ϕ0 γ 

60° 0.50000 0.86603 0.70009 0.62039 97.8741 90±8.3° 

90° 0.55006 0.56253 0.45298 0.51238 83.6436 90±19.0° 

120° 0.63015 0.44623 0.37466 0.50724 69.3715 90±31.5° 

135° 0.66353 0.40294 0.35254 0.50815 62.3633 90±37.9° 

150° 0.69338 0.36276 0.33889 0.50708 55.2062 90±44.4° 

180° 0.75000 0.28867 0.33072 0.50518 40.8934 90±57.3° 

186.3° 0.76192 0.27345 0.33198 0.50480 44.1796 90±60.0° 

190 0.76911 0.26433 0.33321 0.50458 36.1375 90±61.6° 

200 0.78886 0.23952 0.33841 0.50398 31.3971 90±65.8° 
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4.2.1 Relevant Numerical Examples 

In Fig. 4.4-a and b are shown schematics of the optimum mechanisms which generate an 

imposed output angle ∆ϕ=120°.  As mentioned before, one mechanism is the mirror image of 

the other one, and therefore both have the same normalized member lengths AB=0.37466 and 

BC=0.50724, while the initial angles of the rocker are 69.37° and -9.37° respectively.  For the 

actual case of mechanism (a), the variations of the output-member angle ϕ and transmission 

angle γ with the displacement of the input member were plotted in Fig. 4.4-c.  The same 

graphs are valid for the complementary mechanism (b), provided that the slider is moved in 

reverse i.e. from xC1 to xC0.  For both cases the maximum deviation of the transmission angle γ 

from 90° will be only ±31.5°.  Based on the results presented in the second part of the chapter, 

 

Fig. 4.3  Slider-rocker mechanism with 180° output member swing angle used as pitch drive in antenna 
or solar panel-orientation mechanisms for mobile application (airplane, ships, space crafts, satellites 
etc.) [5].   
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the optimum oscillating-slide mechanism that generates the same output stroke, exhibits 

variations of the transmission angle that are twice-as-large, rendering this type of mechanism 

unpractical for applications where the output member must rotate in excess of 120°.   

Another slider-rocker mechanism configuration analyzed was that in which the imposed 

swing of the output member is ∆ϕ=180°.  As visible from Fig. 4.5-c, the maximum deviation 

of the transmission angle γ is still acceptable i.e. 90±57.32°.  Fig. 4.2 shows that the level 

curve diagram generated for ∆ϕ=180° exhibit in the lower part of the graph, two additional 

optimum points.  These points correspond to the same base mechanism but mirrored with 

respect the x=0 line, which suffer from order defect (the rocker will rotate CW for the slider 

moving to the left).  Such points occurred because of imposing the rocker to satisfy two 

prescribed positions that are exactly opposite.   

It is to be noticed that the mechanisms in both Fig. 4.4 and Fig. 4.5 exhibit for about 80% 

of the input-member stroke, an almost linear input-output function, which can be sometimes 

desirable.   

piston displacement

a)

c)b)  

Fig. 4.4  Optimum slider-rocker mechanisms with ∆ϕ=120°.  The ϕ and γ diagrams (c) correspond to 
mechanism (a), while (b) is the complementary mechanism.   
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Another property both mechanisms described above have is that there are positions in 

which they would fully lock if motion were to be transmitted in reverse (from the rocker to the 

linear actuator).  Such particular initial or final positions can be found in all optimum slider-

rocker mechanisms with ∆ϕ>77°, and can be utilize in some applications, for example as latch 

mechanisms or, in case of ∆ϕ=180°, as stamping or printing press mechanisms, although 

sometimes this can be a drawback.  In the past Bagci [1] studied the problem of synthesizing a 

slider-rocker mechanism for two prescribed positions of which one is a locking position, but 

without any concern about the transmission angle optimization.   

4.2.2 Optimum Slider-Rocker Mechanism Design Chart  

In order to help the design engineer in quickly sizing slider-rocker mechanism that 

generates an imposed stroke at the output member while simultaneously ensuring maximum 

motion transmission properties, the design charts in Fig. 4.6 have been generated.  The values 

used for plotting the respective curves were obtained by repeatedly minimizing the objective 

function F1 for successive values of ∆ϕ in the range [30°..200°], using Nelder and Mead’s 

c) piston displacementb)

a)

 

Fig. 4.5  Optimum slider-rocker mechanisms with ∆ϕ=180°.  The ϕ and γ diagrams (c) correspond to 

mechanism (a), while (b) is the complementary mechanism.   
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algorithm [6] preceded by an elitist Population Based Incremental Algorithm.  The constraints 

were handled using the 1K-Penalty method as described in Chapter 2.  For these optimum 

mechanisms, the dependence between the initial angle of the rocker and the imposed angle ∆ϕ 

proved to be almost linear according to the formula:   

°+ϕ∆⋅−=ϕ 126.4150.4749250  (4.9) 

(where ∆ϕ and ϕ0 are both in degrees).  With the values xC0 and yC read from the design chart 

and the optimum angle ϕ0 calculated with the above equation (4.9), the normalized lengths AB 

and BC of the rocker and of the coupler can be determined using equation (4.5) and either of 

 

Fig. 4.6  Design chart for selecting the optimum values of xC0 and yC0 for a given output swing angle ∆ϕ 
(above) and the corresponding maximum deviation of the transmission angle γ from 90° (below) of a 
slider-rocker mechanism.  Additional parameters are determined using equations (4.9) (4.5) and (4.3).   
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equation (3).  The maximum deviation of the transmission angle γ from 90° can be estimated 

using the graph provided in the lower part of Fig. 4.6.   

Since for output angles ∆ϕ in excess of 77° the curves xC0(∆ϕ) and yC0(∆ϕ) have smooth 

appearances, the following approximate equations can be employed in substitute to the design 

chart in Fig. 4.6:   

2-6
0C 105.63703-0.003781+0.253944=)( ϕ∆⋅⋅ϕ∆⋅ϕ∆x  (4.10) 

2-6
C 109.88005+0.0057709-1.00473=)( ϕ∆⋅⋅ϕ∆⋅ϕ∆y  (4.11) 

determined by solving appropriate second-degree curve fit problems.   

If the complementary mechanism is wished to be used instead, in view of earlier findings, 

this can be obtained by mirror imaging about the x=0 vertical the mechanism obtained with the 

aid of the design chart in Fig. 4.6 or equations (4.10) and (4.11), with the difference that the 

initial angle of the rocker will be ϕ0=180°-ϕ0-∆ϕ and the initial position of joint C of the input 

member will be xC0=1-xC0.   

4.2.3 How to Handle Workspace Limitations 

In some cases restrictions upon the mechanism link-lengths or ground joint dispositions are 

imposed, leading to a constrained optimization problem that can be formulated starting from 

the same objective functions F1.  Alternatively, the designer can solve the problem 

interactively using appropriate contour-line plots similar to those in Fig. 4.2 (provided that the 

scale factors over x and y axes are equal) following the steps listed below:   

1) Locate the ground pivot joint of the rocker at (0,0).  

2) Draw at scale (i.e. normalized with respect to the piston stroke) over the same contour 

plots any surrounding object that might constrain the location and size of the moving links of 

the mechanism to be designed.   
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3) Position on the diagram yC and xC0 i.e. the piston’s axis and the center joint C for the 

piston fully retracted.  The closest level curve available will help approximate the maximum 

deviation of the transmission angle γ from 90°.   

4) If the transmission angle determined at #3 is satisfactory, find ϕ0 that minimize F1 in 

equation (4.7) for the chosen values of xC0 and yC – one easy way of doing this is to plot 

F1(ϕ0) and extract from the graph the value of ϕ0 at minima.   

5) Calculate the normalized lengths AB and BC using equations (4.5) and (4.3) 

respectively and check for interference between the coupler and the rocker the surrounding 

objects plotted on the graph.   

The final dimensions of the slider-rocker mechanism will be obtained by scaling the 

normalized lengths AB and BC determined above with a factor equal to the stroke of the linear 

actuator selected.   

4.3. Synthesis of the Oscillating-Slide Mechanism  

The oscillating-slide mechanism (Fig. 4.7) is the preferred means of converting the 

rectilinear motion of a linear actuator into swinging motion of a rocker member when this do 

not exceed 120°.  This mechanism has the advantage of developing lower transverse forces 

upon the piston rod (negligible for slow moving machinery), and conversely between the 

piston and the cylinder.   

Same as before, the maximum displacement of the output member ∆ϕ is measured between 

the initial position ϕ0 and the final position ϕ1 of the rocker.  The requirement is to generate 

this imposed stroke ∆ϕ for an extension of the linear-actuator from a minimum length B0C to a 

maximum length B1C.  As compared to the slider-rocker mechanism, where link-lengths were 

normalized with respect to the piston stroke, in this case the dimensions of the mechanism will 
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be normalized by assigning the ground member a unit length i.e. AC=1.  For this normalized 

mechanism, the range of motion of the input member will be described using the k=B1C/B0C 

ratio, that will be further called extension coefficient.   

In the deformable triangular loop ABC, the initial angle ϕ0 of the output member will be 

considered as independent design variable, relative to which the remaining unknown 

parameters AB and B0C can be calculated using the following equations:   

2
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2
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2
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2
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2
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where xC=1, yC=0 and B1C=k×B0C, while the coordinates of the joint center B are: 
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Equations (4.12) and (4.13) give:   
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and by further eliminating B0C2, a quadratic equation in AB is obtained: 

01)1/()coscos(AB2AB 2
10

2 =+−ϕ−ϕ⋅⋅⋅− kk  (4.15) 

 

Fig. 4.7 Oscillating-slide mechanism shown in the extreme positions (B0C, ϕ0) and (B1C, ϕ1).   
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with the solutions:   
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For a chosen value of the initial angle ϕ0 and of an extension coefficient k, relation (4.16) 

returns two values of the output member length AB, and therefore two different mechanism 

solutions exist.  The solution obtained for the double sign in equation (4.16) being minus will 

be called short-rocker oscillating-slide mechanism, while that in which the double sign is plus 

will be called long-rocker oscillating-slide mechanism.  Once the normalized length AB has 

been established, the corresponding normalized length of the fully retracted linear actuator 

B0C can be determined using any of the equations (4.14).   

Since the initial angle ϕ0 of the output member can take any value within (0..180°), it is 

reasonable to search for those particular values of ϕ0 for which the transmission angle γ has 

minimum deviation from 90° during the working range of the mechanism.  For a current 

displacement ϕ of the output member between ϕ0 and ϕ1, the transmission angle γ can be 

evaluated using Cosine Law applied to the deformable triangle ABC, with AC=1 (Fig. 4.7): 

)(BCAB2
1)(BCAB)(cos

22

ϕ⋅⋅
−ϕ+

=ϕγ  (4.17) 

For all practical mechanisms of oscillating-slide type, the displacement of the output-member 

varies monotonically with the slider displacement.  Therefore the function cosγ(ϕ) given by 

relation (4.17) will also be monotonic and consequently the maximum deviation of the 

transmission angle from 90° will occur in the extreme positions of the rocker.  This property 

has been applied in defining the following mini-max problem in one variable ϕ0:   



 

 69

{ }

)(cosc

)(cosc
where

c,cmax)(2F
minimize

11

00

100

ϕγ=

ϕγ=

=ϕ
 (4.18) 

By minimizing the above function F2 for an imposed value ∆ϕ of the output-member stroke, 

the dimensions of the mechanism with minimum deviation of the transmission angle from 90° 

can be determined.  It is evident that the objective function F2 has to be penalized for the cases 

where the discriminant of equation (4.15) is negative and, similarly to objective function F1 in 

equation (4.7), for the cases where the vector loop ABC have different orientations in its initial 

and final position.   

4.3.1 Numerical Example  

Before advancing a number of conclusions and design recommendations, a numerical 

example will be considered, that of synthesizing an optimum oscillating-slide mechanism with 

a swinging angle of the output member ∆ϕ=35°, to be driven with a linear actuator having an 

extension coefficient k=1.6.  For this input data, the two minima of the objective function F2 

obtained using Brent’s algorithm [2], will correspond to the following two mechanism 

solutions:   

The first solution, a short-rocker mechanism (Fig. 4.8-a) has the normalized lengths 

AB=0.6193, B0C=0.6207 and initial angle of the rocker ϕ0=36.23°.  As can be seen from the 

kinematic diagram in Fig. 4.8-c, the maximum deviation of the transmission angle from 90° is 

±17.5°.   

The second solution Fig. 4.8-b, corresponds to a long-rocker mechanism and has the 

normalized dimensions: AB=1, B0C=0.8437 and the initial angle of the rocker ϕ0=49.9°.  
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From the kinematic diagram Fig. 4.8-c (the dashed curves) it can be seen that the transmission 

angle γ has a larger variation than in case of the short-rocker mechanism i.e. 90±42.5°.   

4.3.2 Oscillating-Slide Mechanism Design Recommendations  

The study of a number of optimum solutions of the objective function F2 for various 

combinations of ∆ϕ≤120° and k>1, revealed a number of general properties of the optimum 

short- and long-rocker oscillating slide mechanism:   

1) The short-rocker mechanism ensures a better transmitting angle compared to its 

counterpart long-rocker mechanism.   

2) The long-rocker mechanism is more appropriate for applications where the output 

member swings less than 90°.   

3) For a given angle ∆ϕ the transmission angle γ of the optimum long-rocker mechanism 

can be improved by selecting a linear actuator with a larger extension coefficient k.  

4) The transmission angle of the optimum short-rocker mechanism is not influenced by k.   

piston displacement

a) b) c)
 

Fig. 4.8  Optimum oscillating-slide mechanisms with ∆ϕ=35° and k=1.6 (a and b) together with the 
input-output and transmission angle diagram (c).  The mechanism (a) is of the short-rocker type (the 
continuous lines in the diagram) while the mechanism (b) is the long-rocker type (the dashed lines in the 
diagram).   
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5) For all optimum long-rocker mechanisms, the rocker length will be equal to the base 

length i.e. AB=AC or, in case of the normalized mechanisms, AB=AC=1.   

6) For a given swinging amplitude ∆ϕ of the output member, the transmission angle 

maximum range is equal to the range of the rocker angle i.e. γmax-γmin=∆ϕ for both the short 

and long-rocker optimum mechanism.   

7) For the short-rocker mechanism, the deviation of the transmission angle γ is symmetric 

with respect to 90°, a consequence of the fact that in the extreme positions the joints B0, B1 

and C are collinear.   

4.3.3 Short-Rocker Oscillating-Slide Mechanism Design Procedure  

This last of the above properties suggests the following graphical method of synthesizing an 

oscillating-slide mechanism of the short-rocker type:   

1) Draw three collinear points C, B0 and B1 (in this order) such that B0C is the minimum 

length of the linear actuator to be used and B1C is the maximum length of the actuator.   

2) Locate point A on the perpendicular line to the middle of the segment B0B1 such that 

the angle B0AB1 is the desired swing angle ∆ϕ of the rocker.   

3) The maximum deviation of the transmission angle from 90° of the mechanism will be:   

2/90and2/90 maxmin ϕ∆+°=γϕ∆−°=γ  (4.19) 

Equation (4.19) gives indication upon the applicability limits of the oscillation-slide 

mechanisms mentioned earlier i.e. for ∆ϕ angles of the rocker in excess of 120°, the 

transmission angle γ varies more than ±60° from 90°, making the mechanism prone to locking 

during operation.   
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4.3.4 Long-Rocker Oscillating-Slide Mechanism Design Procedure  

Although optimum oscillating-slide mechanisms with long-rocker have lower motion 

transmission performances than their short-rocker counterparts, the latter ones have their own 

potential for applications in association with large extension coefficient actuators, particularly 

when compact arrangements are sought.  One such example is that of dump truck mechanisms 

that employ telescopic actuators with extension coefficients k greater than 3.   

In the following a simple synthesis method of this type of mechanisms will be described, 

and a transmission angle performance chart will be provided, which gives an overview upon 

the motion transmission properties of mechanisms with various ∆ϕ and k parameters.   

The proposed design procedure uses the fact that the loop of the mechanism is an isosceles 

triangle with AC=AB.  Therefore, by applying Cosine Law for the initial and final 

configuration of the mechanism (for ϕ=ϕ0 and ϕ=ϕ1) the following equation is obtained:   

0
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⎛
=k  (4.20) 

For a given extension coefficient k and maximum swinging angle ∆ϕ this equation can be 

solved in the unknown ϕ0, using an iterative method, and the synthesis problem solved.  The 

minimum and maximum values of the transmission angle γ can then be calculated with the 

following relations (easy derived based on Fig. 8-b):   

2/)(90
2/90

0max

0min

ϕ+ϕ∆−°=γ
ϕ−°=γ

 (4.21) 

Alternative to numerically solving equation (4.20), one can select the initial angle of the 

rocker ϕ0 using the design chart in Fig. 4.9-a (generated by repeatedly minimizing objective 

function F2).   
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In searching for an optimum mechanism configuration and of the corresponding initial 

angle ϕ0 of the rocker, the extension coefficient k can also be considered as design variable of 

a discrete type; for example, when searching for the best long-rocker mechanism solution, the 

designer can experiment with more than one linear actuator available from suppliers.  

Therefore, in order to have an overview upon the motion capabilities of the oscillating-slide 

mechanism of the long-rocker type, the performance diagram in Fig. 4.9-b has been generated.  

This diagram shows that the oscillating-slide mechanism with long rocker is suitable for 

generating maximum amplitudes of the output member less than 90°, and should be used in 

association with large extension-coefficient actuators.   

4.4. Conclusions  

Two mechanisms widely used for convert the input motion of a linear actuator into the 

rotary motion of an output-member rocker were investigated.  The slider-rocker mechanism 

proved to have very good capabilities of generating swinging amplitudes of the output member 

kk

a) b)  
Fig. 4.9  3D-design chart (a) for choosing the optimum value of the initial angle ϕ0 of a long-
rocker oscillating-slide mechanism, and performance chart (b) showing the expected maximum 
deviation from 90° of the transmission angle γ.   
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of 180° and over, while still ensuring an acceptable transmission angles.  The oscillating-slide 

mechanism (which is preferred due to the reduced transversal forces upon the linear motor) 

comes in two optimum configurations, one having a relatively short-rocker and the other one a 

long rocker.  The optimum short-rocker mechanism can generate swing amplitudes of the 

output member up to 120° with acceptable transmission angle variations.  The long rocker 

mechanism should be used in association with large stretch-coefficient actuators and are 

recommended when compact arrangements are needed and when the output-member stroke is 

less than 90°.   

For all these mechanisms design charts or easy to apply synthesis procedures were 

proposed, which permit quick selection of the optimum geometry.  Also given are performance 

charts that allow a convenient overview upon the motion transmission capabilities of these 

mechanisms useful for design problems when the range of motion of the input and output 

member do not have strictly imposed values.   
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CHAPTER 5. OPTIMUM TEETH-NUMBER SYNTHESIS OF A MULTISPEED 

PLANETARY TRANSMISSION 

The gear-teeth number synthesis of an automatic planetary transmission used in 

automobiles is formulated as a constrained optimization problem that is solved with the aid of 

an elitist Population Based Incremental Learning algorithm (PBIL).  The design parameters are 

the teeth number of each gear, the number of multiple planets and gear module, while the 

objective function is defined based on the departure between the imposed and the actual gear 

ratios, constrained by teeth-undercut avoidance, limiting the maximum overall diameter of the 

transmission and ensuring proper planet spacing.  For the actual case of a Ravigneaux 

planetary transmission with 3+1 speeds, the design space is visualized to show the effect of 

various constraints, and some optimum results presented.   

5.1 Introduction 

The wide applicability of planetary gears in the aircraft, marine and mainly automotive 

industry (particularly as automatic multispeed transmissions), has brought a great deal of 

attention to this topic.  The literature on the design of planetary automatic transmissions covers 

conceptual design [3] [4] [13] [14] [19] [20] [27] [33] [41], kinematic analysis [9] [12] [20] 

[21] [26] [33] [40], power flow and efficiency analysis [22] [23] [30] [31].  Less work 

however has been done on the design of multispeed planetary transmissions from the condition 

of satisfying imposed gear ratios - the available literature covers mostly fixed axles 

transmissions [5] [6] [7] [11] [35] and design of single-ratio planetary units [2] [6] [16] [29].   
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Specific to teeth number synthesis of multispeed planetary transmissions are the design 

variables which must be integers (gear teeth and the number of multiple planets) and the 

numerous constraints.  These constraints reduce significantly the feasible domain of the design 

space, making the synthesis problem quite difficult to solve.  The work published on teeth 

number synthesis of multispeed planetary transmissions are, for the most part, hand-

calculation oriented [8] [28] [36], or in the case of computer implemented approaches, only 

some of the numerous constraints were actually considered [1] [24] [25].   

The constraints imposed on multispeed planetary transmissions derive from:  

a) the minimum allowed number of teeth each gear can have so that undercut do not occur,  

b) the maximum allowed diameter of the whole assembly,  

c) the condition of central gears having coaxial axes,  

d) the requirement of equally spacing multiple planets and  

e) the noninterference condition of neighboring gears.   

A maximum mechanical efficiency requirement can also be imposed, although for most 

multispeed planetary transmissions which closely fulfill the prescribed gear ratios, the 

mechanical efficiency can be calculated beforehand.  Aspects like gear material and bearing 

selection from the condition of volume and cost minimization and of satisfying a required 

design life can also be prescribed early in the design process.  However, since these can be 

decoupled from the gear-teeth selection, it is preferable to be solved as a subsequent 

multiobjective optimization problem once a satisfactory teeth-number combination becomes 

available [34].   

For this particular design problem the gear-teeth numbers and the number of equally 

spaced planets are imposed integer values, while the module of the gears can have only 

discrete values in accordance to gear standards.  As discussed earlier, such design variables 
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may be considered from the beginning integers, or a continuous-variable nonlinear 

programming problem can be solved first, and afterwards a supplementary search for integer 

optimum values performed in the vicinity of the continuous optimum found.  The former 

approach is proven to have an increased capacity of locating a true integer/discrete optimum 

[35] and was therefore adopted for the present example of optimum synthesis a 3+1 speeds 

Ravigneaux planetary transmission.   

5.2 The Ravigneaux 3+1 Gear Transmission  

Fig. 5.1 shows a planetary transmission of the Ravigneaux type with 3 forward and 1 

reverse gears used in automobiles.  A kinematic diagram of the transmission is available in 

Fig. 5.2, where the broad planet gear is shown as two compound gears 2 and 3.  Based on the 

 

Fig. 5.1  Ravigneaux planetary gear [17]: 1 small sun gear; 2-3 broad planet gear; 4 large sun gear; 
5 narrow planet gear; 6 ring gear.   
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clutch/brake activation required in each gear (Table 5.1), it can be shown that for the first and 

reverse gears the planet carrier is immobile and the equivalent transmission is a fixed-axle one 

with the following gear ratios:   

461 NN=i  (5.1) 

and 

( ) ( )4162R NNNN−=i . (5.2) 

In the third gear, the planet carrier, sun gears and ring gear rotate together as a whole:   

13 =i  (5.3) 

i.e. a direct drive, which ensures an increased mechanical efficiency of the transmission.   

The second gear configuration is the only case when the transmission works as a planetary 

gear set.  Considering the planet carrier c immobile, three basic gear ratios can be defined as 

follows:   

1

2
3

6

5

4input

B1

C1 C2

B2

c

output

 

Fig. 5.2  Kinematic diagram of a 3+1 gear ratios Ravigneaux planetary transmission.  Note that the 
broad planet gear consists now of two distinct gears 2 and 3.   
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31
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−==−= iii . (5.4) 

Through motion inversion, which converts the planetary gear into a fix axle transmission, the 

following additional relations between the angular velocities (ω) of the sun gears 1 and 4, ring 

gear 6 and planet carrier c can be written as:   

c4

c1c
14

c6

c4c
46

c6

c2c
16 ,,

ω−ω
ω−ω

=
ω−ω
ω−ω

=
ω−ω
ω−ω

= iii . (5.5) 

Eliminating ωc between any two of the above equations and for ω4=0, the sought-for second 

gear ratio can be obtained:   

( )
( )4631

42316
2 NNNN

NNNNN
−

+
=i . (5.6) 

The expressions of the gear ratios i1, i2 and iR previously derived will be further used in 

formulating the teeth number optimum synthesis problem.   

5.3 The Optimization Problem  

For the present optimum design problem, the design variables are the teeth numbers of the 

sun, ring and planet gears and the number of equally-spaced, identical planets to be mounted 

on the planet carrier.  Other design variables are modules m1=m2 and m3=m4=m5=m6 which can 

have only discrete values in accordance with gear standards.   

Table 5.1  Clutch/brake activation table of the Ravigneaux planetary transmission.   

Clutch/Brake Speed 
C1 C2 B1 B2

First x   x 
Second  x x  
Third x x   
Reverse  x  x 
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Appropriate objective function to be used for minimizing the departure between the actual 

(ik) and the imposed (i0k) gear ratios could be a weighted maximum norm:   

( )kkkkjn iiwmaxmpNNf 011 ),,...( −⋅=  (5.7) 

or sum of weighted squared residuals:   

∑ −=
k

kkkjn iiwmpNNf 2
012 )(),,...( . (5.8) 

where k={1, 2, R} is the number of gear ratios (less the direct drive) and wk are weighting 

coefficients which will differentiate the importance of these gear ratios during the design 

process (for example lowering the importance of the reverse gear which is engaged for shorter 

periods of time).   

As it will be seen, some of the constraints (as well as the objective function itself) have 

meaning for both continuous and integer values of the design variables (i.e. the gears inside the 

transmission can be considered ideal friction wheels), while other constraints require explicitly 

the design variables to be integers.  Therefore treating some of the variables as continuous and 

some as discrete or integers may bring additional complications to the problem formulation.   

Noting with ns=2 the number of sun gears, np=3 the number of distinct planets (gears 2, 3 

and 5) and nr=1 the number of ring gears, the lower side constraints upon teeth numbers have 

the following general expressions:   

)1(NminN npnsjjj +≤≤≤  (5.9) 

where Nminj (the minimum number of teeth the sun or planet gears can have) are specified 

from the condition of undercut avoidance as 17 or 14 even 12 teeth if the use of nonstandard 

gears is acceptable,.   

Limiting the maximum outer diameter of the transmission Dlimit can be accounted for by 

imposing an upper value to the root diameter of the ring gear as follows:   
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itlim63 D)5.2N( ≤+m . (5.10) 

Imposing a maximum outside diameter of the transmission also requires that the working 

space of planet 2 to be constrained:   

( ) ( )[ ] itlim21211 D12N2NN2 ≤+++ mm . (5.11) 

i.e. the standard center distance of gears 1 and 2 (the first term) plus the outside radius of 

planet 2 (the second term) to be less then maximum admissible radius of the transmission.   

The condition of solar and ring gears to have coaxial axles can be written either as equality 

constraints, or, if nonstandard gears are acceptable, as inequality constraints.  The latter case is 

more advantageous to the searching process and, for the actual case of gears 1 and 6 the 

following relation must be imposed between the standard center distances of gears 1 and 2 and 

6 and 3.  This can be generically written as:   

( ) ( ) ( ) 22NN2NN 31363211 mmmm +≤−−+  (5.12) 

The neighborhood condition refers to adjacent, non-meshing gears, the teeth of which are 

required to operate at a distance greater than a certain minimum value dminij:   

ijij dd min≥  (5.13) 

where dij is the distance between the addendum circles of the teeth of the respective neighbor 

wheels.  For broad planet 2-3 and idler planet 5 (Fig. 5.3) these distances can be approximated 

with:   

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ π+
= 1

2
Nsin

2
NN2 2

1
21

122 m
p

md  (5.14) 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ π−
= 1

2
Nsin

2
NN2 3

3
36

333 m
p

md  (5.15) 

and  
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For checking the interference avoidance of planets 3 and 5 the following distance must also be 

evaluated:   
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The distances between the addendum circles of planet gear 3 and sun gear 4:   
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Fig. 5.3  Schematic for calculating distances d22, d34, d35 and d35.  Notice that one of idler planets 5 has 
been removed for clarity.   
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and between addendum circles of ring gear 6 and idler planet gear 5:   
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must also be kept larger than a certain value in order to allow satisfactory lubricant flow.   

When the minimum admissible values dminij in equation (5.13) are defined as a multiple of 

the modulus of the respective neighboring gears, the corresponding inequalities simplify to 

some extent (see Appendix 2 where the optimization problem has been summarize for 

conciseness and where d minij were considered equal to multiples dij of either m1 or m3).   

The most restrictive constraints of all are the conditions of assembling equally spaced 

planets.  These are equality constraints in integer numbers.  Based on the theory developed in 

[37], for the planetary gear in Fig. 5.2 the condition of having equally spaced identical 

compound planets 2-3 writes:   

32
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where A and B are integers less-equal than N2/p and N3/p respectively, Frac(..) is the fractional 

part of the expression in parentheses while  

63
c

3612
c

21 NNandNN =−= −− ii  (5.22) 

are called partial basic ratios of the planetary gear (i.e. the gear ratios between the designated 

gears when the planet carrier is maintained fix).   

For the planetary transmissions in Fig. 5.1 and 5.2 a second assembly condition 

requirement must be imposed to idler planets 5.  The equivalent expression in basic ratios 

applied to either gear 4, 5, 3 or 6 (and without resorting to the Frac operator so that 

simplifications can be made across the equal sign), reduces to [37]:   

( ) integerp =− 46 NN . (5.23) 
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5.4 Search Algorithm 

The optimization problem previously formulated has been solved with the aid of an elitist 

Estimation of Distribution Algorithm of the Population Based Incremental Learning (PBIL) 

with 1K-Penalty as described in Chapter 2.  The general structure of the algorithm presented in 

connection with equations (2.2, 2.3 and 2.4) was modified in order to avoid premature 

convergence due to standard deviation becoming too small as follows:  

If the infinite norm of the standard deviation vector {σi} is less than a certain small value 

σmin while Gc (the number of the current generation) is less than r⋅Gmax, with r < 1, then the 

algorithm is restarted but without discarding the best solution found so far.    

The numerical results reported below were obtain in 200 runs of the elitist PBIL algorithm 

with M=80, N=40, r=0.75 and w=1.  The stopping criteria considering was exceeding 

Gmax=500 generations.   

5.5 Numerical Results 

The design problem detailed above and systematized in Appendix 2 was solved for a 

maximum outer diameter of the transmission Dlimit=220 mm and for the following imposed 

gear ratios: i01=3.11, i02=1.84, i03=1.0, iR=-3.22.   

For simplicity a maximum norm-based objective function f1 (Eq. 5.7) with all weightings 

wk equal to 1.0 has been considered.   

In order to facilitate the searching process, the teeth number combinations for which only 

assembly condition (5.23) holds were not rejected, but rather assigned the objective function 

40-50 times its current value.  This is because according to [37] there are alternative solutions 

available for the cases when equally spaced multiple planets cannot be assembled together as 

follows:   
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a) One possibility is to assemble identical planets at different spacing angles (this approach 

is more conveniently applicable to planetary units restricted by only one assembly-condition 

equation, which is not the case of the current problem).   

b) In case of the planetary transmission in Fig. 5.2, equally spaced p nonidentical compound 

planets can be assembled, provided that gears 2 and 3 are manufactured rotated relative to each 

other by a certain angle δϕk as follows [37]: one compound planet must be considered as 

reference while the k-th planet (counting in the clockwise direction) requires for assembly to 

1

3

1

3

 

Fig. 5.4  Projection of the lower envelope of objective function f1=Err. max with N2≠N3 on the (m1,m3,f1) 
space (a), and plot of the corresponding outer diameter of the transmission (b) for the case of equally 
spaced identical planets.   
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have gear 2 and 3 rotated counterclockwise by the following two angles about the planet 

carrier:   
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which translate into the following relative angle at which assembly is ensured:   
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Since gears 2 and 3 have periodic profiles, angles δϕk are actually equivalent to a much 
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Fig. 5.5  Projection of the lower envelope of objective function f1=Err. max with N2≠N3 on the (m1,m3,f1) 
space (a), and plot of the corresponding outer diameter of the transmission (b) for the case of equally 
spaced nonidentical compound planets 2-3.   
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smaller angles, which may allow identically manufactured planets to be plastically torsioned a 

small amount so that assembling becomes possible.   

In order to assist the design process, a visualization of the objective function f1 has been 

performed by projecting its hypersurface down to the 3D space of (m1, m3, f1).  As shown in 

Chapter 3, the lower envelope of the hypersurface of a single valued function of more than two 

variables f(x1, x2…xn) projects down to the 3D space formed with the function value f and two 

of the variables, say x1 and x2, as the partial global minima function:   

)...(),( 1...21..3
3

nxxn xxfminglobalxxf
n

=↓ . (5.26) 

where x1 and x2 are scan variables and x3..n are search variables.  In a similar manner, by 

considering only one scan variable, the lower envelope of the same hypersurface can be 

plotted as a 2D graph:   
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Fig. 5.6  Projection of the lower envelope of objective function f1=Err. max with m1=m3 and N2=N3 on 
the (m1,f1) plane (a), and plot of the corresponding outer diameter of the transmission (b) for the case of 
equally spaced identical planets.   
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In case of objective function f1, choosing as scan variables the module m1 and m3 of the gears, 

the graph in Fig. 5.4-a has been generated for a transmission with equally spaced planets and 

identical compound gears 2 and 3.  Similar plots have been generated (Fig. 5.5-a) for the cases 

when the compound planets must be manufactured with gears 2 and 3 rotated at different 

angles.   

The plots in Fig. 5.4-a and Fig. 5.5-a allow the designer to select a suboptimum teeth 

number combination based on additional criteria, like the availability or cost of gear cutting 

tools, or the requirement of all gears having the same modulus i.e. m1=m3.   

The accompanying graphs (Fig. 5.4-b and Fig. 5.5-b) showing the actual maximum 

diameter of the transmission Dmax calculated with the left-hand side of equations (5.10) and 

(5.11), provide additional information to the designer, who can select the teeth number 

combination and module m1, m2 which ensure an outer diameter of the transmission smaller 

than the actual imposed value Dlimit.  They also indicate whether or not an increased of the 

m
ax

m
ax

1 3

1 3

 

Fig. 5.7  Projection of the lower envelope of objective function f1=Err. max with m1=m3 and N2=N3 on 
the (m1,f1) plane (a), and plot of the corresponding outer diameter of the transmission (b) for the case of 
equally spaced nonidentical planets 2-3.   
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maximum allowed diameter of the transmission can insure further reduction of the departure 

between the imposed and the actual gear ratios.   

Referring back to Fig. 5.1, it is evident that it is more advantageous to manufacture 

planetary transmission with planets 2-3 having identical gears 2 and 3.  The corresponding 

optimum solution can be obtained by minimizing objective function f1 subject to the same 

constraints and additionally imposing N2=N3 and m1=m3.  Fig. 5.6-a and Fig. 5.7-a show 2D 

projections (m1 is the only scan variable) of the lower envelope of the objective-function’s 

hypersurface when subject to these additional constraints.  Fig. 5.6-a was generated for the 

case of equally spaced identical planets while Fig. 5.7-a corresponds to the gears 2 and 3 of the 

compound planets being manufactured at different relative angle according to equations (5.24) 

and (5.25).   

The global optimum solution corresponding to the transmission variants studied through the 

graphs in Figs. 5.4 through 5.7 are gathered in Table 5.2.  The planetary transmission that 

Table 5.2  Results obtained through the optimization process (note the double global optimum obtained 
in case of the transmission with N2≠N3 and with identical compound planets – solutions 2 and 3).   

 Solution 1 Solutions 2, 3 Solution 4 Solution 5 Solution 6 
Maximum 

Error 
0.45186 
(24.6%) 

0.46435 
(25.2%) 

0.46435 
(25.2%) 

0.50290 
(26.9%) 

0.51462 
(27.4%) 

N1 32 36 27 45 45 
N2 25 28 21 34 34 
N3 41 32 32 =N2 =N2 
N4 34 27 27 31 31 
N5 29 24 24 36 18 
N6 121 96 96 112 111 
m1 2.50 1.75/2.0 2.75 1.75 1.75 
m3 1.75 1.75/2.0 2.00 1.75 1.75 
p 3 3 3 3 4 
i1 3.5588 3.5556 3.5556 3.6129 3.5806 
i2 2.2919 2.3044 2.3044 2.3353 2.3433 
iR -2.7803 -2.7654 -2.7654 -2.7298 -2.7054 

Dmax 
mm 216.1 172.4/197 197 201.3 201.3 

Identical 
planets No Yes Yes No Yes 



 

 90

ensures the least error (solution number 1 in Table 5.2) is shown drawn at scale in Figs. 5.8.  It 

requires two of the compound planets to have gears 2 and 3 rotated relative to each other by an 

angle ±147.746º, which is equivalent to only ±0.117º due to the periodic profiles of the two 

wheels.   

Solution number 6 in Table 5.2, which can be considered the most convenient to 

manufacture due to the identical, equally spaced planets, is shown drawn at scale in Fig. 5.9.   
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Fig. 5.8  Front view of the transmission with N1=32, N2=25, N3=41, N4=34, N5=29, N6=121, p=3, 
m1=2.5 and m3=1.75 mm.  
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5.6 Conclusions 

The gear-teeth number synthesis of an automatic planetary transmission of the Ravigneaux 

type was solved with the aid of an Estimation of Distribution Algorithm.  All possible 

assembly and interference avoidance requirements were accounted for in the form of 

constraints.   

By allowing nonstandard involute gears to be used, an increase of the feasible domain was 

obtained, favorable to the design process.  Visualization of the design space through partial 

global minima plots added insight to the synthesis problem in that it allows selecting the 

 

Fig. 5.9  Front view of the transmission with N1=45, N2=N3=34, N4=31, N5=18, N6=111, p=4 and 
m1=m3=1.75 mm.   
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numerical solution based on additional requirements, like ensuring a reduced diametral size of 

the transmission or using unified gear cutting tools in the manufacturing process.   

The presented approach can be easily extended to the teeth number synthesis of automatic 

planetary transmission with more than 3 forward gears that include a Ravigneaux gear-set:  

When only simple planetary units are associated in an automatic transmission, the number of 

geometric constraints will occur in lesser number, although there will be additional equally-

spaced-planet assembly condition requirements that must be accounted for in the form of 

constraints.   
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CHAPTER 6. SYNTHESIS AND ANALYSIS OF THE FIVE-LINK REAR SUSPENSION 

SYSTEM USED IN AUTOMOBILES 

In this chapter the problem of optimum kinematic synthesis and analysis of the five-link 

independent suspension system (also known as multi-link suspension mechanism symbolized 

5S-5S) is investigated.  The synthesis goal is fulfilling a minimum variation of the wheel-track, 

toe angle and camber angle during jounce and rebound of the wheel.  Two variants obtained by 

synthesis are analyzed and compared to an existing solution, and the displacement, velocity 

and acceleration of the wheel carrier relative to the car body are determined, together with the 

variation of the momentary screw axis and the rear axle roll-center height.  Both the kinematic 

synthesis and the analysis are performed in a simplified, easy to implement manner.   

6.1. Introduction  

The five-link suspension mechanism was first introduced by Deimler-Benz on their W201 

and W124 series under the name "multi-link suspension" (Fig. 6.1-a).  Ever since has been 

successfully implemented both in independent suspension systems and in rear axle guiding 

mechanisms by many automobile manufacturers.  Due to the larger number of design 

parameters, it has the capability of better fulfilling the complex kinematic and dynamic 

requirements imposed on suspension systems of today’s automobiles.  It is however much 

more difficult to synthesize than any other suspension mechanism, due to its general spatial 

configuration.  In case of multi-link front suspensions the design problem is even more 

complex due to the fact that the kingpin is a virtual one [1] [2] corresponding to the 



 

 96

momentary screw axis of the wheel-carrier performing the steering motion relative to the 

chassis. 

The rear independent wheel or axle guiding mechanism(s) are, in the sense of Mechanism 

Theory, spatial motion generators (also known as rigid body guidance mechanisms).  Research 

on motion generators synthesis and analysis has been carried out on both abstract and applied 

mechanisms by many researchers in the past.  A general formulation of the mechanism 

synthesis problem for path, function and rigid-body guidance based on optimization 

techniques was proposed by Aviles et al. [3].  According to the authors, a global error function 

to be minimized was defined as a weighted-sum of some local error functions, previously 

minimized with respect to the Cartesian coordinates of the “basic-points” of the mechanism.  

The so called “basic points” are the centers of the joints and the points of the links required to 

generate certain paths throughout the working range of the mechanism.  Although the method 

is general in its formulation, the main disadvantage lays in the large number of variables 

 

Fig. 6.1  Five-link independent suspension mechanism (a) and its kinematic diagram (b).   
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required to define the objective function, as well as in not including the ground joint 

coordinates among the design parameters.   

An extension of the approach of Aviles et al. to the synthesis of spatial linkages was given 

by Jimenez et al. [4].  However, the main drawback of an excessive number of design variables 

required in formulating the synthesis problem was maintained.  In the example presented of 

synthesizing a 5S-5S suspension mechanism for only 3 prescribed positions of the wheel-

carrier, an objective function of 64 variables was defined.   

Suh [5] synthesized a double wishbone suspension mechanism (an RSSR-SS spatial 

motion generator), which can be considered a particular embodiment of the five-link 

suspension [1], in a mixed approach with two finite and instantaneous exact positions, using 

displacement matrices and constraint equations.  

A combination of exact and approximate synthesis was performed by Sandor et al. [6] for 

the same RSSR-SS motion generating mechanism.  The authors considered part of the 

positions imposed to the wheel-carrier as exact positions and solved the corresponding set of 

equations.  The free choices in these equations were further considered design variables in an 

objective function, penalized with the conditions of avoiding branching, achieving correct 

sequence of prescribed positions and observing the shortest and longest links to be within 

prescribed limits in the remaining imposed positions.   

The method detailed in this dissertation for kinematic synthesis of the 5S-5S rigid body 

guidance mechanism assumes the guided body (the wheel-carrier) released from its joints and 

moving in successive positions along the ideal trajectory.  The synthesis problem thus becomes 

that of finding the joint disposition for which the distances between the homologous released 

joints (the pair joints that in the real mechanism are connected by binary links) vary as little as 

possible.  This is a variant of the finite-position spatial theory of kinematic synthesis [7] [8] [9] 
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the object of which is determining those points which lie on special loci: spheres, cylinders, 

circles, lines etc.   

The same approach of considering the wheel-carrier released from its joints was also 

successfully applied for displacement analysis of the same mechanism.  The interested reader 

can find this procedure directly applicable to solving the direct kinematic problem of a variety 

of parallel mechanisms of the Gough-Stewart type.   

6.2. Synthesis Problem Formulation  

The requirements upon the motion of the rear wheel that can be transposed into kinematic 

conditions when synthesizing the suspension mechanism are [10]:   

-minimum toe angle variation during compression and rebound;   

-avoid excessive outward camber thrust on corners;   

-avoid excessive sideways thrust and consequent rear-end steering impulses on single 

wheel bump or rebounds.   

-in addition, the suspension elements must ensure a minimum intrusion into the passengers 

and luggage compartment, a condition that can be translated into constraints imposed to the 

possible disposition of the ball joints on the chassis and on the wheel carrier.   

The effect of the compliance of the rear wheel suspension upon the car ride behavior is 

important and in the final design must necessarily be considered by performing a dynamic 

simulation of the whole vehicle.  However, in order to simplify both the kinematic synthesis 

and analysis procedures, it is common in the early stages of design to assume that the joints 

have neither clearances nor elasticities, and the vehicle chassis and suspension elements are 

rigid.  When equipped with compliant-joints, it is to be expected that a rigid joint suspension 
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that exhibit good kinematic characteristics, will continue to perform satisfactory (provided that 

the stiffness rates of the joints are properly selected).   

Taking the first three above-mentioned conditions imposed to a suspension system, it can 

be considered that the ideal wheel movement along its operation travel must be close to a 

vertical translation relative to the car body.  This is in accordance with Raghavan’s findings 

[11] that for straight-line motion of the car, the motion of the wheel relative to the road should 

exhibit zero toe and camber change, and that track width should be maintained constant.   

In order to formulate the synthesis problem, all the five links are removed from their joints 

(or assumed of variable length), thus allowing the wheel carrier to be displaced in successive 

positions along any trajectory.  If the distance between the homologous joints varies very little 

in these successive positions, the real mechanism with the five links jointed back in place will 

guide the wheel very close to the imposed path.   

The above considerations are the basis for formulating the synthesis of the five-link 

mechanism as an optimization problem, i.e. of finding the minimum of the following objective 

function of 30 variables (Fig. 6.1-b): 

[ ]
25

1 1
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with j=1..n intermediate positions of the wheel carrier evenly spaced on the prescribed 

trajectory.   

In the followings this imposed trajectory will be a simple vertical translation of the wheel 

carrier i.e. xN and yN are kept constant for zNj varying between a lower zNmin and an upper zNmax 

limit of point N attached to the wheel carrier.  One should not expect that the mechanism 

obtained by synthesis to exactly generate this pure vertical motion.  As will be seen later, the 

kinematic behavior of the synthesized mechanism depends noticeably on the values chosen for 
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zNmin and zNmax (which should not necessarily be the upper and lower limits of wheel travel 

during jounce and rebound, nor even belonging to the actual motion range of the wheel-

carrier).   

The reference lengths of the links noted li (i=1,5) in relation (6.1) are determined as the 

distances between the joints Ai and Bi for the wheel in its initial position, corresponding to the 

car averagely loaded and in rest.  The variable distances (AiBi)j between the five homologous 

joints Ai and Bi in a current position j of the wheel-carrier is given by:   

2
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2
BA

2
BA )zz()yy()xx()BA( ijijijijijijjii −+−+−=  (6.2) 

where the coordinates x, y and z must be specified relative to the same reference frame, 

preferable the fixed reference frame Oxyz.  Because the disposition of the ball-joint centers Bi 

is given in the reference frame attached to the wheel carrier Nx’y’z’, the following 

transformations must be applied in order to make use of equation (6.2):  
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In the initial position, the reference frame Oxyz attached to the chassis and the frame Nx’y’z’ 

attached to the wheel-carrier are considered parallel.  Knowing the coordinates (xN0, yN0, zN0) 

of the origin of Nx’y’z’ frame relative to the chassis reference frame, the coordinates of the 

same point N relative to Oxyz reference frame will be (xN0, yN0, zNj) for a current prescribed 

position j, where zNj=zNmin+∆zNj with ∆zNj=j⋅(zNmax-zNmin)/n.   

The limitations upon the possible locations of the ball joints on the chassis and wheel-

carrier can be prescribed as side constraints of the form:   
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and must necessarily be imposed in order to avoid convergence to unpractical solutions with 

links excessively long.   

The objective function (6.1) together with the constraints (6.4) and (6.5) can be minimized 

using a proper optimization subroutine.  Of the maximum number of design variables (30 in 

total - irrespective of the number of intermediate positions n of the wheel carrier), some of the 

ball-joint centers can be imposed fixed values and the number of design variables further 

reduced.   

In theory it is possible to prescribe a trajectory to the wheel-carrier that can be exactly 

generated by a real mechanism (case in which the global minima of the objective function F 

will be zero).  In practice however, there will always be a departure between the prescribed 

motion and the actual motion of the real mechanism.  Therefore a kinematic analysis is 

required in order to determine the actual behavior of the suspension mechanism obtained by 

synthesis.   

6.3. Kinematic Analysis of the Five-Link Suspension Mechanism 

The analysis of the five-link suspension mechanism has been tackled by a number of 

researchers in the past.  Lee et al. [1] derived the velocity equations of the wheel carrier and 

applied a step-wise linearization to solve the position problem.  Mohamed and Attia [12] used 
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the constrained equations obtained from the condition that the five connecting rods and the 

wheel-carrier are rigid bodies.  Knapzyk and Dzierzec [13] considered a modified mechanism 

with two of the guiding links disassembled and solved an optimization problem describing the 

condition that the distances between the homologous released joints remain equal to the 

lengths of the disconnected members.   

Following [6], Unkoo and Byeongeui [2] used 4×4 displacement and differential-

displacement matrices and constraint equations to solve the position and velocity problem of 

five-link and strut-type multi-link suspensions.  The referred authors also determined the 

imaginary kingpin axis of these suspensions systems using screw-axis theory and compared 

the results with those obtained by finite-center analysis.   

The same approach of considering all the five connecting rods removed will be further 

considered.  For successive values of the input parameter zN, the position of the point N 

relative to the horizontal axis and the orientation angles of the wheel-carrier will be tuned in a 

searching process, until the distances between the released joints Ai and Bi become equal 

(within some error limits) to the lengths of the respective links AiBi.   

6.3.1 Position Problem 

The five-link suspension mechanism has 6 degrees-of-freedom, of which 5 are trivial 

rotations of the connecting links around their own axes.  Correspondingly, the position of the 

wheel carrier can be specified using only one independent parameter viz the coordinate zN of 

the origin of the Nx’y’z’ reference frame relative to the central reference frame Oxyz.  The 

remaining 5 parameters: coordinates xN, yN and angles α, β and γ that define the position and 

orientation of the wheel carrier can be determined by solving the following equations of 

constraint:   
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describing the condition of the distance between joints Ai and Bi to remain constant during the 

working range of the mechanism.  In the above equation (6.6), the coordinates xBi, yBi and zBi 

are determined by applying the following transformation to the Nx'y'z' reference frame:   
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where [Rβαγ] is the transformation matrix that express the successive rotation of the wheel-

carrier relative to Oxyz by the pitch angle β, yaw angle α and roll angle γ [14]:   
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In the above equation [Rα,z], [Rβ,y] and [Rγ,x] are the basic rotation matrices while cα=cosα, 

sα=sinα and so forth.  

For a given value of the independent parameter zN, the system of equations (6.6) in the 

unknowns α, β, γ, xN and yN can be very conveniently solved by minimizing the following 

objective function:   
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In order to facilitate convergence, the starting point when minimizing F0 can be taken the 

position of the wheel-carrier (the same xN, yN and orientation angles α,β,γ) imposed during 

synthesis for the same zNj .  Once the displacement problem of the wheel carrier is solved, the 
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diagram of the wheel track, recessional wheel motion, camber and toe-angle alteration can be 

generated.   

6.3.2 Linear Velocity and Acceleration Analysis  

The velocities of points Bi on the wheel carrier can be determined by differentiating once 

with respect to time the equations of constraint (6.6).  The number of unknowns thus emerging 

is 15, and therefore 10 more equations must be added, like the time derivatives of following 

equations:   
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describing the condition that the wheel carrier is a rigid body.  By differentiation these 

equations once with respect to time, a new independent parameter Nz&  will emerge, which, the 

same as zN must be specified as input during the numerical analysis.  The coefficients of the 

system of linear equations in the 17 unknowns iii BBB z,y,x &&&  (i=1..5), NN yandx &&  used for 

velocity analysis are summarized in Table 6.1.   

By differentiating with respect to time the equations used to solve the velocity problem, a 

second system of linear equations in the unknowns iii BBB z,y,x &&&&&& (i=1..5), NN yandx &&&&  will be 

further obtained, the coefficients of which are given in Table 6.2.  In this case zN, Nz&  and Nz&&  

will be the independent parameters that must be specified as inputs.   
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Table 6.1  The coefficients of the linear system of equations used to determine the linear velocity of points Bi (i=1..5).   

1Bx&  1By&  1Bz&  2Bx&  2By&  2Bz&  3Bx&  3By&  3Bz&  4Bx&  4By&  4Bz&  5Bx&  5By&  5Bz&  Nx&  Ny&   

xA1-xB1 yA1-yB1 zA1-zB1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 xA2-xB2 yA2-yB2 zA2-zB2 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0  xA3-xB3 yA3-yB3 zA3-zB3 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 xA4-xB4 yA4-yB4 zA4-zB4 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 xA5-xB5 yA5-yB5 zA5-zB5 0 0 0 

xB1-xB2 yB1-yB2 zB1-zB2 xB2-xB1 yB2-yB1 zB2-zB1 0 0 0 0 0 0 0 0 0 0 0 0 

xB1-xB3 yB1-yB3 zB1-zB3 0 0 0 xB3-xB1 yB3-yB1 zB3-zB1 0 0 0 0 0 0 0 0 0 

xB1-xB4 yB1-yB4 zB1-zB4 0 0 0 0 0 0 xB4-xB1 YB4-yB1 zB4-zB1 0 0 0 0 0 0 

xB1-xB5 yB1-yB5 zB1-zB5 0 0 0 0 0 0 0 0 0 xB5-xB1 yB5-yB1 zB5-zB1 0 0 0 

0 0 0 xB2-xB3 yB2-yB3 zB2-zB3 xB3-xB2 yB3-yB2 zB3-zB2 0 0 0 0 0 0 0 0 0 

0 0 0 xB2-xB4 yB2-yB4 zB2-zB4 0 0 0 xB4-xB2 YB4-yB2 zB4-zB2 0 0 0 0 0 0 

0 0 0 xB2-xB5 yB2-yB5 zB2-zB5 0 0 0 0 0 0 xB5-xB2 yB5-yB2 zB5-zB2 0 0 0 

xB1-xN yB1-yN zB1-zN 0 0 0 0 0 0 0 0 0 0 0 0 xN-xB1 yN-yB1 (zB1-zN) Nz&

0 0 0 xB2-xN yB2-yN ZB2-zN 0 0 0 0 0 0 0 0 0 xN-xB2 yN-yB2 (zB2-zN) Nz&

0 0 0 0 0  xB3-xN yB3-yN zB3-zN 0 0 0 0 0 0 xN-xB3 yN-yB3 (zB3-zN) Nz&

0 0 0 0 0 0 0 0 0 xB4-xN YB4-yN zB4-zN 0 0 0 xN-xB4 yN-yB4 (zB4-zN) Nz&

0 0 0 0 0 0 0 0 0 0 0 0 xB5-xN yB5-yN zB5-zN xN-xB5 yN-yB5 (zB5-zN) Nz&
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Table 6.2♦  The coefficients of the linear system of equations used to determine the linear accelerations of points Bi (i=1..5).   

1Bx&&  1By&&  1Bz&&  2Bx&&  2By&&  2Bz&&  3Bx&&  3By&&  3Bz&& 4Bx&& 4By&& 4Bz&& 5Bx&& 5By&& 5Bz&& Nx& Ny&  

* * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
1B

2
1B

2
1B zyx &&& ++  

0 0 0 * * * 0 0 0 0 0 0 0 0 0 0 0 2
2B

2
2B

2
2B zyx &&& ++  

0 0 0 0 0 0 * * * 0 0 0 0 0 0 0 0 2
3B

2
3B

2
3B zyx &&& ++  

0 0 0 0 0 0 0 0 0 * * * 0 0 0 0 0 2
4B

2
4B

2
4B zyx &&& ++  

0 0 0 0 0 0 0 0 0 0 0 0 * * * 0 0 2
5B

2
5B

2
5B zyx &&& ++  

* * * * * * 0 0 0 0 0 0 0 0 0 0 0 2
2B1B

2
2B1B

2
2B1B )zz()yy()xx( &&&&&& −−−−−−  

* * * 0 0 0 * * * 0 0 0 0 0 0 0 0 2
3B1B

2
3B1B

2
3B1B )zz()yy()xx( &&&&&& −−−−−−  

* * * 0 0 0 0 0 0 * * * 0 0 0 0 0 2
4B1B

2
4B1B

2
4B1B )zz()yy()xx( &&&&&& −−−−−−  

* * * 0 0 0 0 0 0 0 0 0 * * * 0 0 2
5B1B

2
5B1B

2
5B1B )zz()yy()xx( &&&&&& −−−−−−  

0 0 0 * * * * * * 0 0 0 0 0 0 0 0 2
3B2B

2
3B2B

2
3B2B )zz()yy()xx( &&&&&& −−−−−−  

0 0 0 * * * 0 0 0 * * * 0 0 0 0 0 2
4B2B

2
4B2B

2
4B2B )zz()yy()xx( &&&&&& −−−−−−  

0 0 0 * * * 0 0 0 0 0 0 * * * 0 0 2
5B2B

2
5B2B

2
5B2B )zz()yy()xx( &&&&&& −−−−−−  

* * * 0 0 0 0 0 0 0 0 0 0 0 0 * * 2
N1B

2
N1B

2
N1BN1BN )zz()yy()xx()zz(z &&&&&&&& −−−−−−−  

0 0 0 * * * 0 0 0 0 0 0 0 0 0 * * 2
N2B

2
N2B

2
N2BN2BN )zz()yy()xx()zz(z &&&&&&&& −−−−−−−  

0 0 0 0 0 0 * * * 0 0 0 0 0 0 * * 2
N3B

2
N3B

2
N3BN3BN )zz()yy()xx()zz(z &&&&&&&& −−−−−−−  

0 0 0 0 0 0 0 0 0 * * * 0 0 0 * * 2
N4B

2
N4B

2
N4BN4BN )zz()yy()xx()zz(z &&&&&&&& −−−−−−−  

0 0 0 0 0 0 0 0 0 0 0 0 * * * * * 2
N5B

2
N5B

2
N5BN5BN )zz()yy()xx()zz(z &&&&&&&& −−−−−−−  

 

                                                           
♦ The star entries in Table 6.2 designate coefficients identical to the corresponding ones in Table 6.1.   
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6.3.3 Angular Velocity and Angular Acceleration Analysis 

The components of the angular-velocity vector (ωx, ωy, ωz) relative to the fixed reference 

frame Oxyz can be determined using the following matrix equation known from the rigid body 

kinematics:   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ω
ω
ω

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

NB

NB

NB

z

y

x

N

N

N

B

B

B

zz
yy
xx

z
y
x

z
y
x

i

i

i

i

i

i

&

&

&

&

&

&

 (6.12) 

written for any two different points of the wheel carrier for which the linear velocity are 

known.  The expressions of ωx, ωy and ωz as derived from relation (6.12) are given in 

equations (A3.1) in Appendix 3.   

The components of the angular-acceleration vector (εx, εy, εz) can be determined writing 

the following equation, the same for two different points of the wheel carrier:   
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The expressions of εx, εy and εz derived through analytical manipulations of relation (6.13) are 

summarized in equations (A3.2) in Appendix 3.  Alternatively, the components of the angular 

acceleration can be determined by differentiating once with respect to time the components of 

the angular velocity:   

zzyyxx and, ω=εω=εω=ε &&& . (6.14) 

The results of velocity and acceleration analysis will be further used in determining the 

location of the instantaneous screw axis of the wheel-carrier moving relative to the chassis.  

Position, velocity and acceleration problems are also stages required in solving the dynamic 
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problem of the suspension system.  According to Hiller [15], of the total CPU time needed to 

simulate the response of a five-link suspension to a road input, almost 70% was required for 

solving the kinematics of the system.  The method described above for solving the position 

problem it is likely to reduce this amount of time, since requires solving a system of only 5 

nonlinear equations.  

6.3.4 Instantaneous Screw Axis 

Considering the instantaneous motion of the five-link suspension, the wheel-carrier motion 

relative to the car body is a screw motion of the circle-point-surface fixed to the wheel-carrier 

 

Fig. 6.2  Center-point-surface and circle-point-surface of a five-link independent suspension solution 2 
in paragraph 4 in perspective view (a) and top view (b).   
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with respect to the center-point-surface fixed to the car body [16].  The common tangent of 

these two surfaces is the instantaneous screw axis of the spatial motion (see Fig. 6.2), and 

corresponds to the points of minimum velocity of the wheel carrier relative to the car body.  

Therefore, the parameters positioning the momentary screw axis can very well be determined 

by formulating a minimization problem.   

A different approach is to solve the system of equations expressing the condition the linear 

velocity )z,y,x( &&&  of a point (x,y,z) attached to the wheel carrier is parallel to the angular 

velocity vector (ωx,ωy,ωz):   

zyx zyx ω=ω=ω &&&  (6.15) 

Based on equation (6.12), the above equalities becomes:   

z
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 (6.16) 

The resulting expressions of the parametric equation of the momentary screw axis x(y) and 

z(y) are given in equations (A3.6) in Appendix 3.   

Determining of the screw due to steering input is of much significant importance in the 

case of the five-link suspension mechanism used for guiding the front wheels, which has a 

second DOF corresponding to the steering input.  When only the steering input is active, the 

resulting momentary screw axis (which can be calculated following a similar approach) will be 

the virtual kingpin of the wheel during the steering motion [2].   
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6.3.5 Suspension Roll Center   

Each suspension has a roll center defined as the point in the vertical plane through the 

wheel centers at which lateral forces may be applied to the sprung mass without producing 

suspension roll [17] [18].  According to Reimpell and Stoll [19] there is a direct correlation 

between the wheel track variation and the roll-center height hR. According to the same authors, 

this correlation is also conflicting, in that a high roll center (which is desirable for a favorable 

car body attitude during cornering) implies a larger track alteration.  The suspension roll center 

can be approximately determine by finite-center analysis as the intersection between the 

normal to the trajectory of the path center point S projected on the vertical plane Oxz and the 

car's longitudinal plane Oyz  (Fig. 6.3).  The following formula:  

)(zz)(zz
)(zz)(zz)(zx)(zx

5.0)(z
NSNS

1N
2

jSN
2
S1N

2
SN

2
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jNR
jjj

jjjjh
−

−+−
= ++

 (6.17) 

has been derived for calculating the roll-center height relative to the chassis reference frame.  

The height of the roll-center measured from the ground will be: 

 
Fig. 6.3  Schematic for calculating the roll-center height of the rear axle.   
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)(zx)(z)(z N
2
SjNjNR j

'
Rhh −=  (6.18) 

In the above equations zNj and zNj+1 are two successive positions of the wheel center, 

sufficiently close one to the other to allow a tangent-chord approximation along the trajectory 

of the path center point.   

6.4. Numerical Results   

Based on the procedure described above, the synthesis of a five-link rear wheel 

independent suspension system was performed.  The numerical data corresponding to the 

Mercedes-190 multi-link suspension available [13] was used in defining the allowable 

positions of the ball-joint centers (Table 6.3).   

The origin of the Nx'y'z' coordinate system in the reference position was xN0=705mm, 

yN0=0 and zN0=302mm, while the wheel radius was R=314mm.   

Two intervals of the wheel-carrier vertical travel have been considered in the objective 

function F.  The first numerical solution recorded (Table 6.4) was obtained for the reference 

frame Nx'y'z' translating verticaly between zNmin=-50mm and zNmax=100mm.  The second 

Table 6.3  Side constraints of the design variables xAi, yAi, zAi, xBi, yBi, zBi (i=1..5).   

190 ≤ xA1 ≤ 220 87 ≤ yA1 ≤ 117 216 ≤ zA1 ≤ 246 

481 ≤ xA2 ≤ 511 -336 ≤ yA2 ≤ -306 236 ≤ zA2 ≤ 266 

389 ≤ xA3 ≤ 419 -224 ≤ yA3 ≤ -194 281 ≤ zA3 ≤ 311 

422 ≤ xA4 ≤ 452 -224 ≤ yA4 ≤ -194 387 ≤ zA4 ≤ 417 

341 ≤ xA5 ≤ 371 -10 ≤ yA5 ≤ 20 401 ≤ zA5 ≤ 431 

-53 ≤ x'B1 ≤ -33 33 ≤ y'B1 ≤ 53 -104 ≤ z'B1 ≤ -84 

-83 ≤ x'B2 ≤ -63 -54 ≤ y'B2 ≤ -34 -149 ≤ z'B2 ≤ -129 

-49 ≤ x'B3 ≤ -29 -151 ≤ y'B3 ≤ -131 -43 ≤ z'B3 ≤ -23 

-53 ≤ x'B4 ≤ -33 -88 ≤ y'B4 ≤ -68 87 ≤ z'B4 ≤ 105 

-83 ≤ x'B5 ≤ -63 -5 ≤ y'B5 ≤ 15 115 ≤ z'B5 ≤ 135 
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solution (Table 6.5) was obtained for zNmin=3000mm and zNmax=3100mm.  This unusual 

domain of zN facilitated obtaining a kinematic solution that ensures a higher location of the 

suspension roll center relative to the ground.  According to [19], both rear and front 

suspension-roll centers should be as high as possible and at approximately the same height.  

However, limitations imposed to the wheel track alteration (mostly for the front wheels) 

restrict choosing a rear suspension that ensures a roll center located to high.   

The two solutions obtained by synthesis noted 1 and 2, were compared with an existing 

solution noted 0 also available in [13].  The wheel track variation:   

)z(x)z(x)z(S NS0NSN −=∆  (6.19) 

Table 6.4  Solution obtained for -50mm≤zN≤100mm in the objective function F0 (variant 1).   

 i=1 i=2 i=3 i=4 i=5 

xAi 190.436 482.605 401.068 422.000 344.310 

yAi 87.591 -317.292 -210.635 -198.545 -3.447 

zAi 238.816 236.036 289.298 410.077 430.258 

x'Bi -33.737 -63.000 -31.195 -46.577 -67.136 

y'Bi 43.949 -36.344 -135.524 -78.843 -3.353 

z'Bi -90.997 -129.034 -43.000 87.000 115.002 

li 483.584 329.115 284.509 265.835 293.853 

 

Table 6.5  Solution obtained for 3000mm≤zN≤3100mm in the objective function F0 (variant 2).   

 i=1 i=2 i=3 i=4 i=5 

xAi 203.760 493.038 390.597 422.066 348.449 

yAi 111.186 -330.546 -197.256 -211.100 20.000 

zAi 243.559 261.996 308.938 392.424 426.300 

x'Bi -33.000 -69.814 -29.608 -35.783 -72.934 

y'Bi 37.798 -34.000 -133.477 -82.386 15.000 

z'Bi -100.101 -148.828 -30.041 87.057 115.226 

li 475.783 346.393 294.182 278.679 283.807 
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is visibly improved in case of solution 1.  Also improved is the camber angle alteration ∆δ as 

compared to the existing solution 0 (Fig. 6.4).   

In Fig. 6.5 is given the diagram of the recessional motion of the wheel as the variation of 

yS coordinate of the center path S.   

)z(y)z(y)z(Y NS0NSN −=∆  (6.20) 

This parameter describes the fore/aft motion of the wheel during jounce and rebound.  

However, since it occurs along the direction of car travel, is has a smaller effect upon the car 

dynamics than the wheel track alteration.   

The camber angle variation ∆δ was determined as the projection of the angle between the 

axes Oz and Nz' on the vertical transverse plane (Fig. 6.6-a).   

Similarly, the toe angle alteration ∆ϕ shown in Fig. 6.7-b was determined as the angle 

between the axes Ox and Nx' projected on the horizontal plane.  In this case, 

 
Fig.6.4  Wheel track alteration (a) and recessional wheel motion (b) during jounce and rebound for an 
initial solution 0, and the two solutions obtained by synthesis, 1 and 2.   



 

 114

for -150mm ≤ ∆zN ≤ 150mm the toe angle of solution 1 is slightly larger than that of the 

existing solution 0, being however compensated by the under-steer effect of track widening 

during jounce.   

For illustrative purposes, the diagrams of the magnitude of the angular velocity ω and 

angular acceleration ε of the wheel carrier have been plotted (Fig. 6.6) for Nz& =1.0m/s 

and 0z N =&&  using equations (A3.1) and (A3.2) in Appendix 3.   

The results of the kinematic analysis have been used in the 3D visualization and animation 

of the mechanism and also to check the possible collisions between the mobile elements.  For 

this purpose an AutoLISP application named M3D.LSP (see Appendix 4) was developed for 

 

Fig. 6.5  Camber alteration ∆δ(∆ZN) (a) and toe angle alteration ∆ϕ(∆ZN) (b) of the wheel relative to the 

chassis during jounce and rebound, for the same numerical variants in Fig. 6.4.   
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automatically generating and animation inside AutoCADTM environment of 3D entities (e.g. 

cylinders, spheres, cones, tori) with their dimensions, positions and orientations read from an 

ASCII file.   

Fig. 6.7, shows superimposed positions of the suspension mechanism solution 1, 

corresponding to zN0 and zN0±150mm, viewed from the rear (a) and from above (b) generated 

using M3D.LSP program.  The validity of the kinematic analysis results was checked using 

MSC.visualNastran 4D commercial multibody simulation software; some results are available 

for comparison in Appendix 5.   

The circle-point-surface and the center-point-surface in Fig. 6.3 were produced for 

solution 2.  They were generated as ruled surfaces of the momentary screw axis relative to the 

chassis (the circle-point-surface) and to the wheel carrier (the center-point-surface).  The 

inclined position of the screw axis relative to car’s longitudinal axis is due to the wheel-carrier 

 

Fig. 6.6  Variation of the angular velocity ω (a) and angular acceleration ε (b) for Nz& =1.0m/s 
and 0z N =&&  for the same variants in Fig. 6.4.   
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rotation around its own axis, which for solution 2 corresponds to a maximum angle γ of 16.2° 

occurring for maximum rebound.   

Finally, the plot in Fig. 6.8 of the alteration of the roll center height with ∆zN were 

produced.  As compared to the existing solution, both variant 1 and 2 have a favorable smaller 

drop of the roll center under load.  According to [19], in case of the real vehicle with compliant 

suspension, the roll center will be higher than for the simplified mechanism with rigid joints.   

6.5. Conclusions   

A complex multibody synthesis problem was presented, that of designing a five-link 

independent rear suspension system under the condition of ensuring a proper motion of the 

wheel-carrier.  Also given were complete kinematic analysis equations that allow determining 

the wheel recession, wheel-track, toe angle, camber angle and roll-center height variation 

together with the linear and angular velocities and accelerations of the wheel-carrier of a given 

 
Fig. 6.7  Superimposed positions of the suspension mechanism solution 1, corresponding to ∆zN=0 and 
∆zN=±150mm, viewed from the rear (a) and from above (b).   
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five-link suspension system.  Two variants obtained by synthesis were analyzed and compared 

to an existing solution of a Mercedes 190 suspension system.  Though the characteristics of the 

same mechanisms equipped with compliant joints will differ, the good behavior of the rigid 

joint mechanisms obtain by synthesis are likely to be preserved.   

Both the synthesis and the analysis procedures advanced in this chapter can be extended to 

designing and simulating other suspension systems.  For example the RSSR-SS double-

wishbone suspension can be synthesized in the same manner.  Multi-link suspensions used for 

front wheels of passenger cars (that have a second DOF needed for wheel steering) can also be 

synthesized following a similar approach, as well as the 5S-5S mechanisms used in guiding 

rigid axles.  In this case however, the effect of joint elasticities must necessary be assessed 

using an advanced dynamic simulation software, since they have an essential contribution to 

the combined translation-rotation motion of the real axle.   

 
Fig. 6.8  Variation of the suspension roll-center height, measured relative to the car reference frame (a) 
and relative to the ground (b).  In the reference position (∆zN=0), hR=138.6mm for variant 0, 
hR=73.2mm for variant 1 and hR=150.4mm for variant 2.   
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CHAPTER 7. CONCLUSIONS  

AND SUGGESTIONS FOR FURTHER RESEARCH 

In this dissertation new optimum design tools were proposed and tested for solving several 

multibody design problems of engineering importance.   

Firstly the constrained optimization problem solving capabilities of two Estimation of 

Distribution Algorithms (EDA) i.e. the Univariate Marginal Distribution Algorithm (UMDA) 

and Population Based Incremental Learning Algorithm (PBIL) were tested and some 

improvements proposed.  It was found that forcing the standard deviation values to remain 

relatively large for an extended period of time during the search avoids premature convergence 

of these algorithms and increases their global optimum finding capabilities.  It was also 

proposed that, within EDAs, the norm of the standard deviation vector can be used as stopping 

criteria, similarly to the gradient vector in derivative-based searching algorithms.  Further 

investigations should be performed in testing the above concepts using additional benchmark 

optimization problems from literature, and also comparisons should be made with other 

Evolutionary Computation algorithms.   

Secondly a technique of projecting hypersurfaces down to 3D and 2D space was proposed, 

which is particularly useful in inspecting the design space of objective functions of more than 

two variables.  This technique requires repeated partial-global minimizations and/or 

maximizations of the function with respect to all but one or two of the design variables.  

Therefore the availability of powerful global optimization techniques are necessary 

requirements for its implementation.  In addition to hyperobject visualization and objective 

function study, the use of this technique in solving multiple-objective optimization problems is 
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also worth investigating - in such problems the designer must make a selection from a set of 

best solutions and therefore an overview of this set through graphical representations is always 

desirable.   

Examples of applying the proposed visualization technique are presented in Chapters 4 

and 5:  In Chapter 4 the properties of the slider-crank and oscillating-slide actuators (widely 

used to convert the input motion of a linear actuator into the rotary motion of an output-

member rocker) have been extensively investigated and new properties revealed.  Further 

practical applications of the slider-crank mechanisms with large displacements of the output 

member, reported in this dissertation, should be sought.   

Another example where the visualization of the design space of the optimization problem 

proved fruitful was the gear teeth number synthesis of an automatic planetary transmission of 

the Ravigneaux type.  This highly constrained optimization problem in integer and discrete 

design variables was solved using an elitist Population Based Incremental Learning algorithm 

(PBIL) modified as proposed in Chapter 2.  The same algorithm was used in performing the 

repeated searches needed for visualizing the design space of the problem through partial global 

minima plots.  Such plots allow the designer to select the final numerical solution based on 

additional criteria, like using unified tools during the manufacturing process or limiting the 

overall size of the transmission.  Further promising research could be the integration in the 

design problem of additional constraints and requirements, like maximizing the mechanical 

efficiency of the transmission and using the engine and torque converter characteristics for fuel 

consumption and dynamic output improvement of the vehicle.   

In Chapter 6 a complex multibody-design problem was solved, that of synthesizing a 

five-link independent rear suspension system from the condition of ensuring minimum wheel 

recession, wheel-track, toe angle and camber variation during jounce and rebound of the 
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wheel.  Simplified analysis procedures were also proposed for verifying the above-listed 

parameters together with roll-center height and linear and angular velocities and accelerations 

of the wheel-carrier.  The synthesis and analysis methods proposed in Chapter 6 can be applied 

to the design and simulation of double-wishbone suspensions and front wheel multi-link 

suspensions.  Other similar parallel mechanisms used in materials handling applications, 

machine tools and robot-manipulators can also be designed and simulated using the proposed 

approach.   
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APPENDICES   

Appendix 1. Computer program for generating the values required for plotting the 

“silhouettes” in Figs. 3.3-c and d and of the corresponding upper/lower-bound paths.   

#include <stdio.h> 
#include <math.h> 
double MatlabPeaks(X1,X2) double X1,X2;{ 
  double T1,T2,T3; 
  T1=pow(1-X1,2)*exp(-pow(X1,2)-pow(X2-1,2)); 
  T2=(X1/5-pow(X1,3)-pow(X2,5)) 
  *exp(-pow(X1,2)-pow(X2,2)); 
  T3=exp(-pow(X1+1,2)-pow(X2,2)); 
  return(3*T1-10*T2-1/3*T3); 
} 
void main(void){ 
   FILE *ASCIIfile; 
   int     i1,n1,i2,n2; 
   double  X1,X1min,X1max,X2,X2min,X2max; 
   double  Z,Zmin,Zmax, X2Zmin,X2Zmax; 
   ASCIIfile = fopen("MatlabPk.DAT", "w+"); 
   fprintf(ASCIIfile,"    X1       Zmin    X2(Zmin)"); 
   fprintf(ASCIIfile,"   Zmax   X2(Zmax)\n"); 
   n1=61;   X1min=-3.0; X1max=3.0; 
   n2=1000; X2min=-3.5; X2max=3.5; 
 
   for (i1= 1; i1 <= n1; i1++) { 
    printf("Loop no. %d\n",i1); 
    X1=X1min+(X1max-X1min)/(n1-1)*(i1-1); 
    Zmin=1.0E100;  Zmax=-1.0E100; 
    for (i2=1; i2 <= n2; i2++) { 
      X2=X2min+(X2max-X2min)/(n2-1)*(i2-1); 
      Z=MatlabPeaks(X1,X2); 
      if (Zmin > Z) { Zmin=Z; X2Zmin=X2; } 
      if (Zmax < Z) { Zmax=Z; X2Zmax=X2; } 
    } 
    fprintf(ASCIIfile,"%f %f %f %f %f\n" 
    ,X1,Zmin,X2Zmin,Zmax,X2Zmax); 
  } 
  fclose(ASCIIfile); 
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Appendix 2.  Summary of the optimum synthesis problem of a 3+1 Ravigneaux 

transmission.   

Find integers N1..6, number of planets p and module m1 and m3 that minimize the function:   

)R}{1,2,((...) 01 =−= kiimaxf kk  (A2.1) 

where:   

11.3andNN 01461 == ii  (A2.2) 

( )
( ) 84.1and

NNNN
NNNNN

02
4631

42316
2 =

−
+

= ii  (A2.3) 

( ) ( ) 22.3andNNNN R04162R −=−= ii  (A2.4) 

subject to the following constrains:  

14NN
17NN

minP5,3,2

minS4,1

=≥

=≥
 (A2.5) 

max63 D)5.2N( ≤+m  (A2.6) 

max21211 D)2N()NN( ≤+++ mm  (A2.7) 

31363211 )NN()NN( mmmm +≤−−+  (A2.8) 

( ) ( ) 02NsinNN 22221 ≥δ−−−π⋅+ p  (A2.9) 

( ) ( ) 02NsinNN 33336 ≥δ−−−π⋅− p  (A2.10) 

( ) ( ) 02NsinNN 55554 ≥δ−−−π⋅+ p  (A2.11) 
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( ) ( ) ( )( )
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p

 (A2.12) 

024NN2N 34436 ≥δ−−−−  (A2.13) 

024N2NN 56546 ≥δ−−−−  (A2.14) 

and equality constrains:   

( ) integerp =− 46 NN  (A2.15) 

and 

323

6
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1

N
B

N
A

N
N

N
N1

±=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

p
Frac  (A2.16) 

where Frac(..) is the factional part of the expression in parentheses, A and B are integers 

within:   

pp /NB0and/NA0 32 <≤<≤  (A2.17) 

The lower limit of N6 determined from equation (A13) and (A14) is:  

),(22N2NN 5634minPminS6 δδ⋅+++≥ min  (A2.18) 

Additional upper side constraints can be obtained as follows:   

From inequality (A6):   

5.2DN min3max6 −≤ m  (A2.19) 

From inequality (A7):   

2N2DN minPmin1max1 −−≤ m  (A2.20) 

( ) 22NDN minSmin1max2 −−≤ m . (A2.21) 



 

 125

From inequalities (A13) and (A19):   

( ) 2/25.6NDN 34minSmin3max3 δ−−−≤ m  (A2.22) 

From inequality (A14) and (A19):   

56minPmin3max4 25.6N2DN δ−−−≤ m  (A2.23) 

( ) 2/25.6NDN 56minSmin3max5 δ−−−≤ m . (A2.24) 

In the above equations the maximum admissible outer diameter is Dmax=220 mm, the number 

of identical planets p can be 3, 4 or 5, while module m1 and m3 can have the following discrete 

values:  1.75, 2.0, 2.25, 2.5, 2.75, or 3.0 mm.  The relative clearance between adjacent wheels 

δ22, δ33, δ55, δ35, δ34 and δ56 were considered all equal 0.5.   



 

 126

 

Appendix 3.  Velocity and acceleration analysis equations of the wheel carrier of a five-

link suspension.   

Considering two distinct ball-joint centers Bj and Bk (Fig. 6.1), the components of the 

angular velocity of the wheel carrier can be calculated with the equations:   

jj

kxk

kjjkjj

jjkjkj

y)1Pz(

x)3Py(

xzyyzx
zx3Pxy2Pxx1P

yz
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∆⋅∆⋅∆−∆⋅∆⋅∆
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=ω

 (A3.1) 

The components of the angular acceleration of the wheel carrier are given by:   
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with   
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,zz3P,yy2P,xx1P NBNBNB &&&&&& −=−=−= kjj  (A3.4) 
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The parametric equations of the screw axis of the wheel carrier can be determined with the 

following equations:   

[ ] ( )
( ) 2
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2
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2
y

2
x2zy1

TT)y(z

)(TT)y(x
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 (A3.6) 

where:   
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Appendix 4.  AutoLisp program for plotting and animating inside AutoCAD lines, 

cylinders, spheres, tori, cones, spirals and AutoCAD blocks using data read from ASCII files.   

;-------------------------------------------------------------------------- 
; M3d.LSP 
;  
; AutoLisp program for plotting and animating lines, cylinders, spheres, 
; tori, cones, spirals and AutoCAD blocks using data read from ASCII files. 
: This program is provided "as is" without express or implied warranty.  
; All implied warranties of fitness for any particular purpose and of 
; merchantability are hereby disclaimed.   (c) P.A. Simionescu  2004 
; 
;-------------------------------------------------------------------------- 
; Input .M3D file line for creating a new layer and making it current: 
; 
; (New_Layer) comment 
; 
;-------------------------------------------------------------------------- 
;Input .M3D file line for setting current color: 
; 
; (CL "RED"    )  comment 
; (CL "YELLOW" )  comment 
; (CL "GREEN"  )  comment 
; (CL "CYAN"   )  comment 
; (CL "BLUE"   )  comment 
; (CL "MAGENTA")  comment 
; (CL "WHITE"  )  comment 
; 
;-------------------------------------------------------------------------- 
;Input .M3D file line for drawing a line from #1 to #2: 
; 
; (x1  y1  z1  x2  y2  z2) comment 
;with: 
;  x1  y1  z1 : WCS coordinates of end #1 
;  x2  y2  z2 : WCS coordinates of end #2 
; 
;-------------------------------------------------------------------------- 
;Input .M3D file line for drawing a cylinder with a sphere at each end: 
; 
; (x1  y1  z1  x2  y2  z2  r12  rS1  rS2) comment 
;with: 
;  x1  y1  z1 : WCS coordinates of end #1 
;  x2  y2  z2 : WCS coordinates of end #2 
;  r12        : cylinder radius 
;  rS1        : sphere radius at end #1 
;  rS2        : sphere radius at end #2 
;NOTE:  
; if (r12 = 0) draws a line from #1 to #2 only 
; if (rS1 = nil) draws no sphere at #1 and the end is transparent 
; if (rS2 = nil) draws no sphere at #2 and the end is transparent 
; if (rS1 =   0) draws no sphere at #1 and the end is opaque 
; if (rS2 =   0) draws no sphere at #2 and the end is opaque 
; 
;-------------------------------------------------------------------------- 
;Input .M3D file line for drawing a cone [fulcrum] with a sphere at each end: 
; 
; (CO x1  y1  z1  x2  y2  z2  r1  r2  rS1  rS2) comment 
;with: 
;  x1  y1  z1 : WCS coordinates of end #1 
;  x2  y2  z2 : WCS coordinates of end #2 
;  r1         : base radius at #1 (cannot be zero) 
;  r2         : base radius at #2 (can be zero) 
;  rS1        : sphere radius at end #1 
;  rS2        : sphere radius at end #2 
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;NOTE:  
; if (rS1 = nil) draws no sphere at #1 and the end is transparent 
; if (rS2 = nil) draws no sphere at #2 and the end is transparent 
; if (rS1 =   0) draws no sphere at #1 and the end is opaque 
; if (rS2 =   0) draws no sphere at #2 and the end is opaque 
; 
;-------------------------------------------------------------------------- 
;Input .M3D file line for drawing a torus: 
; 
; (TO x1  y1  z1  x2  y2  z2  r0  rC) comment 
;with: 
;  x1  y1  z1 : WCS coordinates of the center of the torus 
;  x2  y2  z2 : WCS coordinates of a 2nd point on the axis of the torus 
;  r0         : centroidal radius (cannot be zero) 
;  rC         : radius of the path circle (cannot be zero) 
; 
;-------------------------------------------------------------------------- 
;Input .M3D file line for drawing a sphere: 
; 
; (SP x  y  z  r) comment 
;with: 
;  x  y  z : WCS coordinates of the center of the sphere 
;  r       : radius (cannot be zero) 
; 
;-------------------------------------------------------------------------- 
;Input .M3D file line for drawing a cylindrical helix: 
; 
; (CS x1 y1 z1 x2 y2 z2 r n)  comment 
;with: 
;  x1  y1  z1 : WCS coordinates of end #1 
;  x2  y2  z2 : WCS coordinates of end #2 
;  r          : helix radius 
;  n          : number of threads 
; 
;-------------------------------------------------------------------------- 
;Input .M3D file line for inserting an existing block named "BlkNme": 
; 
; (BK "BlkNme" x1 y1 z1 x2 y2 z2 x3 y3 z3) comment 
;with: 
;  BlkNme      : BlkNme must exist in the database of the current .DWG file 
;  x1  y1  z1  : WCS origin of the reference frame (LRF) attached to the block 
;  x2  y2  z2  : WCS coordinates of a point on the positive OX axis of the LRF 
;  x3  y3  z3  : WCS coordinates of a point on the positive OY axis of the LRF 
; 
;-------------------------------------------------------------------------- 
;Input .M3D file line for inserting a text: 
; 
; (TX "MyText" x1 y1 z1 Hgt Rot) comment 
;with: 
;  MyText     : the text to be printed 
;  x1  y1  z1 : WCS insertion point of the text 
;  Hgt        : text height 
;  Rot        : orientation angle of the text 
; 
;========================================================================== 
;========================================================================== 
 
(defun My_Torus (P1 P2 r1 r2 / e1 e2) 
   (command "_.LINE" P1 P2 "") 
   (setq e1 (entlast)) 
   (command "_.UCS" "_ZA" P1 P2) 
   (command "_.UCS" "_Y" "90") 
   (command "_.CIRCLE" (list 0.0 r1 0.0) r2); generating circle 
   (setq e2 (entlast)) 
   (command "_.revsurf" e2 e1 "" "") 
   (entdel e1); delete axis 
   (entdel e2); delete generating cyrcle 
   (command "_.UCS" "_P" ) 
   (command "_.UCS" "_P" ) 
); end My_Torus 
 
;-------------------------------------------------------------------------- 
 



 

 130

(defun My_cone (P1 P2 h r1 r2 rS1 rS2 / oldelev e1 e2) 
   (setq oldelev (getvar "ELEVATION")) 
   (setvar "ELEVATION" 0) 
    
   (if (=  r2 0.0) (command "_.POINT" P2)); top point 
   (setq e2 (entlast)) 
    
   (command "_.UCS" "_ZA" P1 P2) 
   (command "_.CIRCLE" "0,0" r1); base circle 
   (setq e1 (entlast)) 
   (setvar "ELEVATION" h) 
   (if (/= r2 0.0)  
      (progn 
         (command "_.CIRCLE" "0,0" r2); top circle 
         (setq e2 (entlast)) 
      ); end progn 
   ); end if 
    
   (command "_.RULESURF" (list e1 P1) (list e2 P2)); draw cone 
   (setvar "ELEVATION" oldelev) 
   (command "_.UCS" "_PREV") 
    
   (if (= rS1 nil) (entdel e1)); delete base circle 
   (if (= rS2 nil) (entdel e2)); delete top circle 
); end My_cone 
 
;-------------------------------------------------------------------------- 
(defun My_cylinder (P1 P2 h r12 rS1 rS2 / oldelev e1 e2) 
   (My_cone P1 P2 h r12 r12 rS1 rS2) 
); end My_cylinder 
 
;-------------------------------------------------------------------------- 
(defun My_sphere (Pt rs / e1 e2 ax ax1) 
   (setq ax (list (car Pt) (+ (cadr Pt) rs) (caddr Pt))) 
   (setq ax1 (list (car Pt) (- (cadr Pt) rs) (caddr Pt))) 
   (command "_.LINE" ax ax1 "");Draw axis of revolution 
   (setq e1 (entlast)) 
   (command "_.ARC" ax "_e" ax1 "_a" "180.0"); draw path curve 
   (setq e2 (entlast)) 
   (command "_.REVSURF" (list e2 ax) (list e1 Pt) "" ""); draw sphere 
   (entdel e1) 
   (entdel e2) 
); end My_sphere 
 
;-------------------------------------------------------------------------- 
(defun 3Dspiral (P1 P2 r0 nC) 
   (setq nLC 30); number of segments on one helix 
    
   (setq h (distance P1 P2)) 
   (command "_.UCS" "_ZA" P1 P2) 
   (if (= h 0.0) (command "_.CIRCLE" P1 r0 "")) 
   (if (/= h 0.0) 
      (progn 
         (setq Ainc (/ (* pi 2) nLC)) 
         (setq Hinc (/ (/ h nC) nLC)) 
         (setq Ang 0.0) 
         (setq j 0.0) 
         (command "_.3DPOLY") 
         (setq Pt0 (list  0.0  0.0  0.0))  (command Pt0) 
         (setq Pt  (list   r0  0.0  0.0))  (command Pt) 
         (repeat nC  
            (repeat nLC  
               (setq j (+ j 1)) 
               (setq Pt (polar Pt0 (setq Ang (+ Ang Ainc)) r0)) 
               (setq Pt (list (car Pt) (cadr Pt) (* Hinc j))) 
               (command Pt) 
            ); end repeat nC  
         ); end repeat nLC   
         (setq Pt (list 0.0  0.0  (caddr Pt)))  (command Pt "") 
      ); end progn       
   ); end if 
   (command "_.UCS" "_PREV") 
); end 3Dspiral  
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;========================================================================== 
;========================================================================== 
(defun C:M3D() 
  (setq OldCMDECHO  (getvar "CMDECHO" ))  
  (setq OldBLIPMODE (getvar "BLIPMODE")) 
  (setvar "CMDECHO"   0) 
  (setvar "BLIPMODE"  0) 
  (setvar "SURFTAB1" 16) 
  (setvar "SURFTAB2" 16) 
  (command "_.UCSICON" "_OFF" "") 
  ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
  (setq Path "C:/a/TpFILES/") 
  (setq M3DfileNm (getfiled "Select a M3D input file:" Path "M3D" 8)); accept the 
name of .M3D input-file 
  (setq M3Dfile (open M3DfileNm "r")); open for input an M3D file 
    
  (setq BK "BLOCK"     ) 
  (setq CL "COLOR"     ) 
  (setq CO "CONE"      ) 
  (setq CS "CoilSpring") 
  (setq LN "LINE"      ) 
  (setq SP "SPHERE"    ) 
  (setq TO "TORUS"     ) 
  (setq TX "OutTEXT"   ) 
  (setq ROW (read-line M3Dfile)) 
  (while (/=  ROW nil) 
    (setq ROWlst (read ROW)) 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    ; Create new layer and make it current 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    (if (= (length ROWlst) 1) 
      (progn 
        (setq LayNr (nth 0 ROWlst)) 
        (command "_.LAYER" "_MAKE" LayNr "") 
      ); end progn 
    ); end if new layer 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    ; Set current color 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    (if (AND (= (eval (nth 0 ROWlst)) "COLOR") (= (length ROWlst) 2)) 
      (command "_.COLOR" (nth 1 ROWlst) "") 
    ); end if color 
       
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    ; Write text 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    (if (AND (= (eval (nth 0 ROWlst)) "OutTEXT") (= (length ROWlst) 7)) 
      (progn 
        (setq Txt (nth 1 ROWlst) 
               x1  (nth 2 ROWlst) 
               y1  (nth 3 ROWlst) 
               z1  (nth 4 ROWlst) 
               Hgt (nth 5 ROWlst) 
               Rot (nth 6 ROWlst) 
               P1  (list x1 y1 z1) 
        );end setq 
        (command "TEXT" P1 Hgt Rot Txt "") 
      ); end progn 
    ); end if text 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    ; Draw cylinder [with spheres at ends] 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    (if (AND (/= (eval (nth 0 ROWlst)) "BLOCK") 
      (/= (eval (nth 0 ROWlst)) "CONE")  
      (/= (eval (nth 0 ROWlst)) "LINE")  
      (/= (eval (nth 0 ROWlst)) "TORUS")  
      (/= (eval (nth 0 ROWlst)) "CoilSpring")  
      (> (length ROWlst) 5) (< (length ROWlst) 10)) 
      (progn 
        (setq x1  (nth 0 ROWlst) 
              y1  (nth 1 ROWlst) 
              z1  (nth 2 ROWlst) 
              x2  (nth 3 ROWlst) 
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              y2  (nth 4 ROWlst) 
              z2  (nth 5 ROWlst) 
              r12 (nth 6 ROWlst);cylinder radius 
              rS1 (nth 7 ROWlst);sphere radius at #1 
              rS2 (nth 8 ROWlst);sphere radius at #2 
              P1  (list x1 y1 z1) 
              P2  (list x2 y2 z2) 
        ); end setq 
        (if (= r12 nil) (setq r12 0.0)) 
        (if (= r12 0.0) (command "_.LINE" P1 P2 "")) 
          
        (if (/= r12 0.0) 
          (progn 
            (setq h (distance P1 P2)) 
            (if (/= h 0.0) 
              (progn 
                (setq r12 (abs (float r12))) 
                (My_cylinder P1 P2 h r12 rS1 rS2) 
              ); end progn 
            ); end if 
          ); end progn 
        ); end if 
        (if (= rS1 nil) (setq rS1 0.0)) 
        (if (= rS2 nil) (setq rS2 0.0)) 
        (setq rS1 (float rS1) rS2 (float rS2)) 
        (if (/= rS1 0.0) (My_sphere P1 rS1)) 
        (if (/= rS2 0.0) (My_sphere P2 rS2)) 
      ); end progn 
    ); end if cylinder 
 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    ; Draw helix 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    (if (AND (= (eval (nth 0 ROWlst)) "CoilSpring") (= (length ROWlst) 9)) 
      (progn 
        (setq x1  (nth  1 ROWlst) 
              y1  (nth  2 ROWlst) 
              z1  (nth  3 ROWlst) 
              x2  (nth  4 ROWlst) 
              y2  (nth  5 ROWlst) 
              z2  (nth  6 ROWlst) 
              r0  (abs (nth  7 ROWlst)) ;coil radius 
              nC  (fix (nth  8 ROWlst)) ;number of coils 
              P1  (list x1 y1 z1) 
              P2  (list x2 y2 z2) 
        );end setq 
        (if (=  r0 0.0) (command "_.LINE" P1 P2 ""));zero diameter arch 
        (if (/= r0 0.0) (3Dspiral P1 P2 r0 nC)) 
      ); end progn 
    ); end if helix 
    
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    ; Draw torus 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    (if (AND (= (eval (nth 0 ROWlst)) "TORUS") (= (length ROWlst) 9)) 
      (progn 
        (setq x1 (nth  1 ROWlst) 
              y1 (nth  2 ROWlst) 
              z1 (nth  3 ROWlst) 
              x2 (nth  4 ROWlst) 
              y2 (nth  5 ROWlst) 
              z2 (nth  6 ROWlst) 
              r0 (abs (nth 7 ROWlst)) 
              rC (abs (nth 8 ROWlst)) 
              P1 (list x1 y1 z1) 
              P2 (list x2 y2 z2) 
        ); end setq 
        (if (/= (distance P1 P2) 0.0) (My_Torus P1 P2 r0 rC))        
      ); end progn 
    ); end if torus 
    
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    ; Draw cone or cone fulcrum [with spheres at ends] 
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    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    (if (AND (= (eval (nth 0 ROWlst)) "CONE") 
      (> (length ROWlst) 8)  
      (< (length ROWlst) 12) 
      ); end AND 
      (progn 
        (setq x1  (nth  1 ROWlst) 
              y1  (nth  2 ROWlst) 
              z1  (nth  3 ROWlst) 
              x2  (nth  4 ROWlst) 
              y2  (nth  5 ROWlst) 
              z2  (nth  6 ROWlst) 
              r1  (nth  7 ROWlst);radius of the circle at #1 
              r2  (nth  8 ROWlst);radius of the circle at #2 
              rS1 (nth  9 ROWlst);radius of the sphere at #1 
              rS2 (nth 10 ROWlst);radius of the sphere at #2 
              P1  (list x1 y1 z1) 
              P2  (list x2 y2 z2) 
        ); end setq 
        (if (= r1 0.0) (command "_.LINE" P1 P2 "")); base circle cannot be 0 radius 
        (if (/= r1 0.0)  
          (progn 
            (setq h (distance P1 P2)) 
            (if (/= h 0.0) 
              (progn 
                (setq r1 (abs (float r1))) 
                (setq r2 (abs (float r2))) 
                (My_cone P1 P2 h r1 r2 rS1 rS2) 
              ); end progn 
            ); end if 
          ); progn 
        ); end if 
         
        (if (= rS1 nil) (setq rS1 0.0)) 
        (if (= rS2 nil) (setq rS2 0.0)) 
        (setq rS1 (float rS1) rS2 (float rS2)) 
        (if (/= rS1 0.0) (My_sphere P1 rS1)) 
        (if (/= rS2 0.0) (My_sphere P2 rS2)) 
      ); end progn 
    ); end if cone 
 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    ; Draw sphere 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    (if (AND (= (eval (nth 0 ROWlst)) "SPHERE") (= (length ROWlst) 5)) 
      (progn 
        (setq x (nth  1 ROWlst) 
              y (nth  2 ROWlst) 
              z (nth  3 ROWlst) 
              r (abs (nth 4 ROWlst)) 
              P1 (list x y z) 
        ); end setq 
        (if (/= r 0.0) (My_sphere P1 r)) 
      ); end progn 
    ); end if sphere 
 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    ; Insert block 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
    (if (AND (= (eval (nth 0 ROWlst)) "BLOCK") (= (length ROWlst) 11)) 
      (progn 
        (setq BlockName (nth 1 ROWlst) 
              x1 (nth  2 ROWlst) 
              y1 (nth  3 ROWlst) 
              z1 (nth  4 ROWlst) 
              x2 (nth  5 ROWlst) 
              y2 (nth  6 ROWlst) 
              z2 (nth  7 ROWlst) 
              x3 (nth  8 ROWlst) 
              y3 (nth  9 ROWlst) 
              z3 (nth 10 ROWlst) 
              P1 (list x1 y1 z1) 
              P2 (list x2 y2 z2) 
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              P3 (list x3 y3 z3) 
        );end setq 
        (command "_.UCS" "_3" P1 P2 P3) 
        (command "_.INSERT" BlockName "0,0,0" "" "" "") 
        (command "_.UCS" "_PREV") 
      ); end progn 
    ); end if block 
    ;- - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
    (setq ROW (read-line M3Dfile)) 
  ); end while 
  (close M3Dfile) 
  (command "_.COLOR" "WHITE" "") 
  (command "_.LAYER" "_SET" "0" "") 
  (command "_.VPOINT" "1,1,1" "") 
  (command "_.ZOOM" "_EXTENTS" "") 
 
  (alert "Choose a proper vewpoint\n\nand then type 'motion'!") 
 
); end defun M3D 
 
;================================================================= 
 
(defun C:MOTION( ) 
 
  (setq SCRfileNm (getfiled "Output file:" "" "SCR" 1)); accept the name of the 
output .SCR file 
  (setq SCRfile (open SCRfileNm "w")); open .SCR file for output 
 
  (setq S SCRfileNm) 
 
  (setq S (substr S (- (strlen S) 12) 9)); extract (roughly) the name of .SCR file 
 
  ; if the name of the .SCR file is shorter than 8 char it must be cleaned off:  
  ; converted S to a list  
  (setq S (list   
            (substr S  1 1) (substr S  2 1) (substr S  3 1) 
            (substr S  4 1) (substr S  5 1) (substr S  6 1) 
            (substr S  7 1) (substr S  8 1) (substr S  9 1) 
          ); end list 
  ): end setq 
  
  (setq AuxS S) 
  (while (/= AuxS nil); delete from front until "\\" encountered 
    (setq S AuxS) 
    (while (AND (/= AuxS nil)(/= (CAR AuxS) "\\")) 
      (setq AuxS (CDR AuxS)); delete 1st char of S until "\" encountered  
    ); end while 
    (setq AuxS (CDR AuxS)); delete the second "\" 
  ); end while 
  (setq AuxS S) 
 
  (setq Path (substr SCRfileNm 1 (- (strlen SCRfileNm) (length S) 4))); update path 
 
  (setq S "") 
  (setq i 0) 
  (while (<= i 4); i less equal 5 means that no more than 999 frames can be 
generated 
    (if (/= (nth i AuxS) nil) (setq S (strcat S (nth i AuxS)))) 
    (setq i (+ i 1)) 
  ); while 
 
;- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
;extract the total number of layers LayNr named 1,2,3...999 
  (setq LayNr (atoi (cdr (assoc '8 (entget (entlast)))))) 
 
  (setq i 1); prepare layer for hiding 
  (command "_.LAYER") 
  (while (<= i LayNr) 
    (command "_OFF" i "_FREEZE" i) 
    (setq i (+ i 1)) 
  ); end while 
  (if (> i  999) (setq i 999)); ignore all frames over 999 
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  (command "" "_.REGEN" "") 
  ;- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
  (setq i 1) 
  (while (<= i LayNr) 
    (command "_.LAYER" "_ON" i "_THAW" i "") 
    (command "_.HIDE" "") 
 
    ; generate ith .BMP file names as NNNNN001.BMP, NNNNN002.BMP ... NNNNNi.BMP 
    ; generate ith .SLD file names as NNNNN001.SLD, NNNNN002.SLD ... NNNNNi.SLD 
    ; with NNN the first 5 characters in the name of the output .SCR file 
 
    (setq SLDfileNm S) 
    (setq BMPfileNm S) 
 
    (if (< i 10) (setq SLDfileNm (strcat SLDfileNm  "00") BMPfileNm (strcat 
BMPfileNm  "00"))) 
    (if (AND (> i  9) (< i  100)) (setq SLDfileNm (strcat SLDfileNm "0") BMPfileNm 
(strcat BMPfileNm "0"))) 
 
    (setq SLDfileNm (strcat SLDfileNm (itoa i))) 
    (setq BMPfileNm (strcat BMPfileNm (itoa i))) 
 
    (write-line (strcat "vslide *" SLDfileNm) SCRfile); write a preload command line 
to .SCR file 
    (write-line "delay 1" SCRfile); write delay command line to .SCR file 
    (write-line "vslide" SCRfile); write line to .SCR file 
 
    (setq SLDfileNm (strcat Path SLDfileNm)) 
    (setq BMPfileNm (strcat Path BMPfileNm)) 
 
    (command "_.MSLIDE" SLDfileNm ""); output SLD file # i 
    (command "_.BMPOUT" BMPfileNm "_ALL" ""); generate BMP file # i 
 
    (command "_.LAYER" "_OFF" i "_FREEZE" i "") 
    (setq i (+ i 1)) 
  ); end while 
 
  (write-line "rscript" SCRfile); write the last line to .SCR file 
  (close SCRfile) 
 
;- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  (setq i 1); restore old settings 
  (command "_.LAYER") 
  (while (<= i LayNr) 
    (command "_ON" i "_THAW" i) 
    (setq i (+ i 1)) 
  ); end while 
  (command "" "_.REGEN" "") 
;- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
  (alert (strcat "Frame files created in the following directory:\n\n"Path)) 
  (setvar "CMDECHO"  OldCMDECHO ); back to old CMDECHO settings 
  (setvar "BLIPMODE" OldBLIPMODE); back to old BLIPMODE settings 
); end MOTION 
 
;========================================================================== 
; Print info message once loaded 
 
(princ "\nFile loaded. Type M3D to run…") 
(princ) 
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Appendix 5.  Simulation results of the optimized five-link suspension (variant 1 in 

Chapter 6) performed using MCS.visualNastran 4D multibody simulation software.   

 

 
 

Fig. A.1  MSC.visualNastran 4D simulation screenshot   
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Fig. A.3  Wheel track and wheel base variation during jounce and rebound for the suspension variant 1 
in Chapter 6 obtained with MSC.visualNastran.   
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Fig. A.2  Camber angle and tow angle variations during jounce and rebound for the suspension variant 1 
in Chapter 6 obtained with MSC.visualNastran.   




