
 296

Constrained Optimization Problem Solving Using
Estimation of Distribution Algorithms

P.A. Simionescu

Dept. of Mechanical Engineering
202 Ross Hall

Auburn University
Auburn, AL 36849

Email: simiope@auburn.edu

D. G. Beale
Dept. of Mechanical Engineering

202 Ross Hall
Auburn University
Auburn, AL 36849

Email: bealedg@auburn.edu

G. V. Dozier
Dept. of Computer Science

109 Dunstan Hall
Auburn University
Auburn, AL 36849

Email: doziegv@auburn.edu

Abstract-Two variants of Estimation of Distribution
Algorithm (EDA) are tested against solving several
continuous optimization problems with constraints.
Numerical experiments are conducted and comparison is
made between constraint handling using several types of
penalty and repair operators in case of both elitist and non-
elitist implementations of the EDA’s. Graphical display and
animations of representative runs of the best and worst
performers proved useful in enhancing the understanding of
how such algorithms work.

I. INTRODUCTION

Estimation of Distribution Algorithms (EDA) are
relatively new comers to the field of Evolutionary
Computation [1, 2]. Their appealing features over other
evolutionary algorithms are a simple structure and an
intuitive dynamics of the population which facilitate
choosing the values of the control parameters. In standard
EDA there are no crossover and mutation operations, the
new population being generated by sampling the
probability distribution of a number of superior
individuals selected from the current population. As
highlighted in [3], the known EDA implementations differ
by the probability distributions employed and by the
survival selection schemes.

Several authors have reported on solving
combinatorial, discrete and continuous optimization
problems using EDA [2, 4, 5, 6]. Work remains to be
done however on testing the capabilities of EDA in
solving constrained optimization problems. In this respect
the present paper investigates the use of Univariate
Marginal Distribution Algorithm (UMDA) and a
Population Based Incremental Learning Algorithm
(PBIL) on three continuous objective functions with
constraints. Comparison is made between constraint
handling using penalty and repair techniques through
numerical experimentation.

II. ALGORITHMS TESTED

Two estimation of distribution algorithms have been
implemented and tested in both elitist and non-elitist
variants.

A. The UMDA Algorithm
The first algorithm considered, a Univariate Marginal

Distribution Algorithm [3, 5], was coded in the following
structure:

Step 1: Generate M uniform random points within the
imposed boundaries of the design variables [xi min… xi max]
(i=1...n) or until at least one feasible individual has been
generated. The population size, M, is a constant specified
by the user.

repeat Step 2 and Step 3 until a certain stopping
criteria is met;

Step 2: Select the best N individuals in the population
and evaluate the average and standard deviation vectors:

{ })...1()(
N
1 N

1k
k nixii =
⎭
⎬
⎫

⎩
⎨
⎧

=µ ∑
=

 (1)

{ } [])...1()(
1N

1 N

1k

2
k nix iii =

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

µ−
−

=σ ∑
=

 (2)

In the above formulae N is a specified integer restricted to
1 < N < M.

Step 3: Replace the whole current population by
generating M normally distributed random points {xi},
(i=1...n) with the averages and standard deviations given
by equations (1) and (2) respectively. In order to ensure
that the newly generated individuals satisfy the imposed
side constraints, the following corrections were
performed:

maxmax

minmin

 THEN IF

 THEN IF

iiii

iiii

xxxx

xxxx

=>

=<
 (3)

Additionally, a record of the best-fit individual
generated so far is kept to be provided as solution of the
search.

The stopping criteria can be either attaining an
imposed maximum number of generations Gmax or
exceeding a prescribed maximum number of function
evaluations NF.

B. The PBIL Algorithm
The second estimation of distribution algorithm tested

was a variant of the Population Based Incremental
Learning Algorithm [6]. The algorithm employs the same
Steps 1 and 2 and stopping criteria listed above, but uses a
different population-generation scheme on Step 3:

Step 3: Generate M new points {xi}, (i=1...n, r=1...M)
to replace the current population, using the standard
deviations (2) and the following vector of corrected
average values:

{ } { }best
*)()1(iii x⋅α+µ⋅α−=µ (4)

0-7803-8515-2/04/$20.00 ©2004 IEEE

 2

where µi are given by the same formula (1) and α is a
variable parameter:

() nw maxc GG⋅=α (5)
with Gc the number of the current generation and w a
chosen constant between 0 and 1. It is to be noticed that
for w=0 the algorithm becomes a UMDA algorithm. In
order to ensure that the imposed side constraints are
satisfied, same tests (3) are applied to the newly generated
points. Similarly to UMDA, the best fit individual
encountered so far is recorded to be provided as solution
of the search.

In case of elitist implementations of the above two
algorithms, further referred to as E-UMDA and E-PBIL,
Steps 3 must be modified so that only M-1 new
individuals are generated and the best fit individual in the
population is not destroyed; evidently, there will no
longer be necessary to keep a record of the best fit
individual generated so far.

III. CONSTRAINT HANDLING TECHNIQUES

There are numerous constraint handling techniques
used in evolutionary computation as follows [7, 8, 9]:
1) various implementations of the penalty method,
2) specialized representations and operators, 3) repair
algorithms, 4) separation of objectives and constraints
(behavioral memory, superiority of feasible points, multi-
objective optimization techniques) 4) hybrid algorithms
etc.

Of the known constraints handling techniques, penalty
and repair methods will be numerically tested in
association with UMDA and PBIL algorithms described
in the previous paragraph.

A. Penalty methods
Three penalty methods have been experimented with in

this paper; all of them operate by providing some fitness
value to the infeasible individuals in the population that
will further help with their ranking. Two of the
considered methods are step-type penalties while a third
method employs the Euclidean distance from the
considered infeasible point to the closest feasible point as
a measure of its infeasibility.

1) The first penalty method tested, of the step type, will
be further referred to as 1K-Penalty and has the form:

⎩
⎨
⎧

=
infeasibleifK
feasibleif)x...x(F

)x...x(fitness 1
1

n
n

 (6)

where K a constant about one order of magnitude greater
than the expected global maxima of the constrained
function. Such a penalty is very easy to implement but
has the main drawback that the search is difficult to
initiate in case of highly constrained problems with
landscape resembling flat plateaus with scattered
crevasses (or only one such crevasse).

2) A slightly more elaborate penalty method tested
resembling the K-method in [10], further called
vK-Penalty was:

⎩
⎨
⎧

⋅
=

infeasibleifK
feasibleif)x...x(F

)x...x(fitness 1
1 v

n
n

 (7)

with v is the number of constraints violated at point
(x1…xn). In this form some rough information about the
degree of constraint violation at a certain point can be
acquired, which can help directing the search toward the
feasible domain. However, as will be seen in case of the
first test problem below, the method is less effective when
the global optima is bounded by more than one active
constraint.

3) A third penalty method tested named DK-Penalty:

⎩
⎨
⎧

⋅
=

infeasibleifK
feasibleif)x...x(F

)x...x(fitness 1
1 2

n
n D

 (8)

employs the distance D between the considered infeasible
point and the closest to it feasible point in the population
[11]. This will require evaluating the Euclidean distance
(or of some other norm) between the current point and all
feasible points in the population, slowing down the
algorithm.

B. Infeasible-individual repair
These constraint-handling techniques require that at

least one feasible individual exists in the current
population. It involves a line searching (or some other
crossover operation) between the current infeasible point
and a selected feasible individual in the population. In the
present paper the following repair methods have been
experimented with:

Repair 1 - repair by line search: Assign to the
infeasible individual to be repaired the closest feasible
individual in the population. If there are no feasible
individuals in the current population, the repair operation
must be suspended and the infeasible points treated in a
simple 1K-Penalty manner (this is the form in which the
method was implemented in the numerical experiments
performed). Alternatively, in case of non-elitist
algorithms, the best point encountered so far can be used
as a second point for the line search operation. After the
infeasible-feasible pairs have been made, a random search
is performed along the line connecting the two points until
a second feasible point is generated to be introduced in the
population in replace to the considered infeasible
individual [12].

Repair 2 - repair by crossover: Instead of doing a line
search, which requires a number of objective function
evaluations, one single crossover operation can be
performed (for example a midpoint crossover) between
the current infeasible and its closest feasible individuals.
Since the offspring that will replace the infeasible parent
may in turn be infeasible, the method is more of an
incomplete repair.

 3

Repair 3 - repair by cloning: Replace the infeasible
individual with an identical copy of the feasible individual
that is closes to it. When only one or two feasible
individuals are available in the population, in order to
preserve diversity (particularly for elitist algorithms), it
might become necessary to repair only part of the
infeasible individuals (a partial repair) to avoid standard
deviation becoming too small, or to impose a lower limit
upon the components of the standard deviation vector.

Combined repairs: Combination of the above
approaches can also be employed, like for example
repairing half of the infeasible individuals using cloning
and the other half using some crossover operation.

Even if they don’t always eliminate the infeasible
individuals, the above listed repair methods contribute to a
favorable confinement of the population toward the
feasible domain(s) of the search space. Methods 2 and 3
have the appealing feature that require less or no
additional function evaluations. They are also suitable in
case of discrete or integer optimization problems, when
the feasible space is very fragmented or is reduced to only
scattered points.

IV. TEST PROBLEMS

Several numerical experiments have been performed on
solving three constrained objective functions. Since
graphical representation and animation of the successive
populations can provide a valuable insight into how
algorithms work, preference has been given to the
following test functions of two variables:

Figure 1. Graph of the Sickle function

Test Problem1 - Sickle function
This is a slightly modified version of problem G6 in

reference [13] which requires minimizing the function:
() ()32

3
121 10x20x)x,x(F −+−= (9)

subjected to:
() ()
() () 081.826x5xg

01005x5xg
2

1
2

12

2
2

2
11

≥+−−−−=

≥−−+−= (10)

and the side constraints:
5.15x14and10x0 21 ≤≤≤≤ (11)

In its original form [13], the side constrains were over 10
times wider, making the ratio between the feasible and the
infeasible spaces very small and therefore a starting
feasible point hard to find. The global minimum point is
located at x1=14.095 and x2=0.84296 for which the
function value is -6961.8139 and both constraints are
active. The maximum point, also double bounded, is
located at x1=14.095 and x2=9.15704 and equals -
1206.13556. As shown by the plot in Figure 1, the
feasible domain of this function is not convex.

Figure 2. Graph of Koziel and Michalewicz’s G6 function

Test Problem2 - Koziel and Michalewicz G6 function
This second problem [13] requires finding the

maximum point of:
() ()
() 3

221

2
3

1
21 xxx

x2sinx2sin)x,x(F
⋅+

π⋅π
= (12)

subjected to:

() 01x4xg

01xxg

2
2

12

2
211

≥−+−−=

≥−−= (13)

and the side constraints (modified as compared to the
original form in [13] for the same reason as before):

1.2x9.0and2.5x2.3 21 ≤≤≤≤ (14)
This multimodal function has its global maximum at
x1=1.24539 and x2=4.2425 and equals 0.09582504. The
global minimum is located at x1=1.24492 and x2=3.74154
where the function value is -0.10363448. Both the global
minimum and the global maximum points are unbounded
i.e. they are located inside the feasible domain (Figure 2).

Test Problem3 - Keane’s function
The third test problem, due to Keane, also listed as

problem G2 in [6], requires minimizing the function:

 4

∑
∏∑

=

==

⋅

−
=

n

i
2
i

n

i i
n

i i

n
i

1

1
2

1
4

1
x

)x(cos2)x(cos
)x...x(F (15)

subjected to:

0x75.0g

05.7xg

12

11

≤−=

≤−=

∏
∑

=

=

n

i i

n

i i n
 (16)

and to the side constrains:
nii ≤≤≤≤ 1for10x0 (17)

This is a highly multimodal function that has its global
minimum constrained by g2. For n=2 its optimum equals
-0.36497974 and occurs for x1=1.60086 and x2=0.468498.
According to [6], for n=20 the minimum value found so
far equals -0.8036.

Figure 3. Graph of Keane’s function with n=2

V. NUMERICAL RESULTS

A set of numerical experiments have been conducted to
test the capabilities of the Estimation of Distribution
Algorithms and constraint handling techniques presented
and the results are summarized in Tables 1-3.

No attempt has been made during these experiments to
fine tune the N, M or w parameters so that performances
are maximized (in all cases N=50, M=25 and w=1 while
the stopping criteria was limiting the maximum number of
function evaluations to NF=5000). The main purpose of
these tests was to identify some promising combinations
of Estimation of Distribution Algorithms and constraint
handling techniques, their potential for improvement and
reasons why they performed or did not perform well.

Problem 1 has a non-convex feasible space with only
one minimum and one maximum (both double
constrained). It is therefore not surprising that the elitist
E-UMDA (and E-PBIL algorithm) with line-search repair
performed well. This is because only feasible individuals
were sampled during the search and the monotonicity of
the function favored a constant downhill migration of the
population.

TABLE I. RESULTS OBTAINED FOR 500 RUNS OF
PROBLEM 1 FOR M=50 AND N=25 (KNOWN GLOBAL

OPTIMUM: -6961.81)
Algorithm Constr.

Handling
Best Average Worst

E-UMDA Repair 1 -6945.91 -5607.47 -2997.05
E-PBIL Repair 1 -6943.65 -5763.21 -3509.77
UMDA Repair 1 -6939.16 -5553.78 -3372.03
E-UMDA vK-Pen. -6930.03 -5104.47 -2480.90
E-PBIL vK-Pen. -6912.24 -5159.63 -2249.93
PBIL 1K-Pen . -6911.18 -5076.39 -2585.59
E-PBIL 1K-Pen . -6903.78 -5244.17 -3117.43
E-PBIL DK-Pen. -6895.40 -5184.25 -2617.83
PBIL Repair 1 -6892.11 -5661.05 -3373.31
E-UMDA Repair 2 -6881.54 -4978.97 -1454.95
UMDA Repair 3 -6874.920 -4135.440 -1321.91
E-PBIL Repair 2 -6871.597 -5018.764 -1973.91
PBIL Repair 2 -6870.774 -5050.324 -1636.22
UMDA Repair 2 -6869.215 -5008.144 -1862.65
E-UMDA DK-Pen. -6860.034 -5068.846 -1542.06
UMDA DK-Pen. -6857.924 -5092.668 -2886.64
PBIL vK-Pena. -6847.324 -5120.544 -2624.04
E-UMDA 1K-Pena . -6836.38 -5048.02 -2218.117
E-PBIL Repair 3 -6821.19 -4113.49 -1286.33
E-UMDA Repair 3 -6813.79 -4148.39 -1279.73
PBIL Repair 3 -6763.21 -4187.59 -1396.38
UMDA vK-Pen. -6755.85 -5095.72 -1776.14
PBIL DK-Pen. -6677.15 -5132.26 -2123.77
UMDA 1K-Pen. -6674.55 -5125.19 -2680.86

This is also illustrated by Figure 4-top where are
plotted superimposed the individuals in all generations
during one run of the E-UMDA + Repair 1 algorithm (less
the intermediate points occurring during line searches).

The runs illustrated by the plots in Figures 4 (and also
in Figures 5 and 6) were considered representative in that
the best fitness found during the respective searches were
very close to the average value recorded in Tables 1-3

Figure 4. Superimposed plots of the points generated
during one run of E-UMDA + Repair 1 (top) and UMDA +
1K-Penalty (bottom) algorithms on Test Problem 1.

 5

(for Figure 4 these fitness values were -5612 vs. -5607
and -5133 vs. -5125).

The same frames plotted superimposed in Figure 4-up
were animated and are available as wmv files at [14] (or
upon request from the first author). From these
animations it can be seen that the best fit individual
emerged (most likely following a repair operation) during
the second generation and was preserved unchanged all
the way to the end of the run. As the search progressed,
the rest of the population slowly moved toward this best

fit individual.
The animation also reveals that imposing the repair

search to be performed along the line pointing in the
direction of the closest feasible individual the
displacement of the population parallel to the boundary of
the feasible space is significantly diminished. One
remedy towards an increased exploration of the areas
parallel to the boundaries of the feasible space (other than
changing the line-repair strategy) can be to force (directly
or indirectly) the components of the standard deviations
vector to stay large during the first few generations.

As visible from Figure 4–bottom, the UMDA algorithm
with 1K-Penalty (that was ranked last) had difficulties in
maintaining a pool of feasible individuals in the
population and was therefore unable to direct the search
toward promising areas of the design space. The wmv
animation file in [14] generated using the same data as for
Figure 4-bottom also shows that the actual solution
(labeled -5132.5) was generated during the early
generations, but no further exploration was performed in
that same area.

Problem 2 Since the global maximum for this problem
is not bounded, the constraint handling technique
employed has very little effect upon the evolution of the
population after several generations have passed, when
more important become the hill climbing capabilities of
the basic EDA employed. The elitist EDA’s particularly
the E-PBIL algorithm exhibits such traits and
consequently performed better (although the favorable
effect of a wider initial sampling of the landscape proved
beneficial as the results in Table 2 show).

Least performers were the non-elitist EDA algorithms
using cloning repair (and repair in general). Repair
operations have the effect of reducing the variability of
the initial populations by forcing its individuals inside the
feasible space.

TABLE 2. RESULTS OBTAINED FOR 500 RUNS OF
PROBLEM 2 FOR M=50 AND N=25 (KNOWN GLOBAL

OPTIMUM: 0.095825)
Algorithm Constr.

Handling
Best

Average Worst

E-PBIL vK-Pen. 0.095825 0.090999 0.019106
E-PBIL DK-Pen. 0.095825 0.090982 0.018469
E-PBIL 1K-Pen. 0.095825 0.090354 0.029143
E-PBIL Repair 1 0.095825 0.089778 0.025175
E-PBIL Repair 2 0.095825 0.089659 0.028708
E-UMDA vK-Pen. 0.095825 0.089549 0.027295
E-UMDA 1K-Pen. 0.095825 0.089199 0.037292
E-UMDA DK-Pen. 0.095825 0.088951 0.027408
E-UMDA Repair 2 0.095825 0.088107 0.025067
PBIL DK-Pen. 0.095825 0.086992 0.022776
UMDA vK-Pen. 0.095825 0.086738 0.019890
PBIL vK-Pen. 0.095825 0.086693 0.026722
UMDA DK-Pen. 0.095825 0.086221 0.027787
UMDA 1K-Pen. 0.095825 0.086214 0.021905
PBIL 1K-Pen. 0.095825 0.086196 0.024969
PBIL Repair 1 0.095825 0.086046 0.023640
PBIL Repair 2 0.095825 0.085759 0.036746
UMDA Repair 2 0.095825 0.085409 0.024786
E-PBIL Repair 3 0.095825 0.082726 0.001645
E-UMDA Repair 1 0.095825 0.082144 0.024559
UMDA Repair 1 0.095825 0.079079 0.018287
E-UMDA Repair 3 0.095825 0.078868 0.013925
PBIL Repair 3 0.095825 0.075557 0.012989
UMDA Repair 3 0.095825 0.074724 0.016606

Figures 5-top and the wmv file available on [14] show
the ascending path followed by the successive populations
in case of the E-PBIL+vK-Penalty algorithm leaded by the
best-fit individual. However, because of the standard
deviations becoming too small, this ascent ended
prematurely, suggesting again that the standard deviation
should be kept at larger values longer periods of time. On
the other hand, as Figures 5-bottom shows, the run of the
UMDA algorithm with clone repair was trapped in the
neighborhood of a bounded local-optima without being
able to advance towards it.

Problem 3 Was a difficult one to solve due to the
global optima being constrained and of the numerous local
optima. Again the elitist E-PBIL algorithm performed

Figure 5. Superimposed plots of the points generated during
one run of E-PBIL + vK-Penalty (top) and UMDA + Repair
3 (bottom) for Test Problem 2.

 6

better (see Table 3), this time in association with a line-
search and crossover infeasible individual repair
(remember that crossover repair is a variant of the line-
search repair). It becomes evident that the favorable hill
climbing characteristics of the E-PBIL algorithm were
augmented by the boundary exploration capabilities
provided by the repair method.

As happed before, and visible from Figure 6-up and the
movie file available on [14], the search lost momentum
due to a premature reduction to very small values of the
components of the standard deviation vector.

For this third test problem, the lowest ranked was the
elitist UMDA algorithm coupled with a DK-Penalty. The
sample run shows an interesting behavior, in which the
best fit individual is trapped around of a local optima and
the rest of the population swarms around another slightly
lower optima. After viewing the animated files generated
with the same data as in Figure 6 below, it becomes
obvious that the swarming can go forever because the
standard deviation can neither go to zero nor increase
enough so that the swarming population can join with the

best fit individual trapped on the neighboring local
optima.

TABLE 3. RESULTS OBTAINED FOR 500 RUNS OF
PROBLEM 3 WITH n=2 FOR M=50 AND N=25 (KNOWN

GLOBAL OPTIMUM: -0.3649797)
Algorithm Constr.

Handling
Best

Average Worst

E-PBIL Repair 1 -0.3649797 -0.239162 -0.133003
E-PBIL Repair 2 -0.3649797 -0.235662 -0.109429
E-PBIL 1K-Pen. -0.3649796 -0.224695 -0.109429
E-PBIL Repair 3 -0.3649793 -0.223351 -0.107983
E-PBIL DK-Pen. -0.3649722 -0.226574 -0.109418
E-PBIL vK-Pen. -0.3649683 -0.227550 -0.133230
PBIL Repair 1 -0.3649352 -0.211658 -0.109323
E-UMDA Repair 1 -0.3639721 -0.206205 -0.101459
UMDA Repair 2 -0.3619513 -0.205715 -0.110912
PBIL vK-Pen. -0.3606485 -0.199515 -0.101611
E-UMDA vK-Pen. -0.3600499 -0.200429 -0.109429
UMDA Repair 3 -0.3544603 -0.192459 -0.099642
UMDA Repair 1 -0.3529160 -0.203255 -0.100988
E-UMDA Repair 2 -0.3528012 -0.207182 -0.117033
UMDA 1K-Pen. -0.3526836 -0.200672 -0.121185
PBIL Repair 3 -0.3525017 -0.196533 -0.099643
PBIL DK-Pen. -0.3505644 -0.20042 -0.108292
PBIL Repair 2 -0.3493383 -0.208814 -0.104155
E-UMDA Repair 3 -0.3474485 -0.196391 -0.108942
E-UMDA 1K-Pen. -0.3461925 -0.200399 -0.109136
UMDA vK-Pen. -0.3434922 -0.195404 -0.114145
UMDA DK-Pen. -0.3397125 -0.199832 -0.103815
PBIL 1K-Pen. -0.3231532 -0.197422 -0.105956
E-UMDA DK-Pen. -0.3087370 -0.197603 -0.107092

VI. CONCLUSIONS

Two Estimation of Distribution Algorithm viz the
Univariate Marginal Distribution Algorithm and a variant
of the Population Based Incremental Learning Algorithm
were coded and tested in both elitist and non-elitist
variants upon solving three continuous test objective
functions with constraints.

Since no attempt has been made to maximize the
performances of any of the algorithms tested, no definitive
conclusion can be drawn upon which implementation and
constraint handling method is the most effective, the
results described herein being rather preliminary. Further
experiments will be required to confirm that elitist ED
algorithms coupled with line-search repair techniques are
more effective in case of multimodal problems or where a
bounded optima is supposed to exist.

There were some suggestions that the function’s local
landscape and the way the current population is
distributed in this landscape should not dictate alone the
probability distribution used in generating the new
individuals. When normal distributions are used, forcing
the standard deviation values to remain relatively large
during a longer period of the search is likely to improve
performance by avoiding “sinking” the population
prematurely into a local optimum area. Another
phenomenon that can be avoided by controlling the
standard deviation values is the localized swarming in

Figure 6. Superimposed plots of the points generated during
one run of E-PBIL + Repair 1 (top) and E-UMDA +
DK-Penalty (bottom) algorithms over test problem 3 with

 7

case of elitist algorithms applied to multimodal functions
(as it was the case of test problem 3), when the best fit
individual is trapped on one local optima while the rest of
the population swarms around a neighboring lower
optima.

Conversely, the same as the gradient value can be used
as stopping criteria in deterministic optimization
algorithms standard deviation values can be used as
stopping criteria in EDA’s. This was suggested by some
of the numerical examples investigated, when the main
part of the search was spent by generating (almost)
identical individuals due to standard deviation vectors
becoming almost zero.

REFERENCES

[1] Müßhlenbein H. and Paaß, G., “From Recombination of
Genes to the Estimation of Distributions,” in Parallel
Problem Solving from Nature IV, Springer, pp. 178-187,
1996.

[2] Larrañaga, P. and Lozano, J. A., Eds., Estimation of
Distribution Algorithms: A New Tool for Evolutionary
Computation, Kluwer Academic Publishers, 2002.

[3] Larrañaga, P., “A review of Estimation of Distribution
Algorithms,” in [2], pp. 57-100, 2002.

[4] Paul T. K. and Iba H., “Linear and Combinatorial
Optimizations by Estimation of Distribution
Algorithms,” Proc. of the 9th MPS Symposium on
Evolutionary Computation, IPSJ, Japan, 2002.

[5] Larrañaga, P., Etxeberria, R., Lozano, J.A. and Peña, J.
“Optimization in Continuous Domains by Learning and
Simulation of Gaussian Networks,” Proc. of the 2000
Genetic and Evolutionary Computation Conference,
GECCO 2000, Las Vegas, NE, pp. 201-204, 2000.

[6] Sebag, M. and Ducoulombier, A., “Extending
population-based Incremental Learning to Continuous
Search Spaces,” in Parallel Problem Solving from
Nature V, pp. 418-427, Springer, 1998.

[7] Michalewicz, Z., Dasgupta, D., Le Riche, R.G. and
Schoenauer, M., “Evolutionary Algorithms for
Constrained Engineering Problems,” Computers and
Industrial Engineering, vol. 30, pp. 851-870, 1996.

[8] Michalewicz, Z. and Schoenauer, M., “Evolutionary
Algorithms for Constrained parameter Optimization
Problems,” Evolutionary Computation, vol. 4, pp. 1 32,
1996.

[9] Coello Coello, Carlos A., “Theoretical and Numerical
Constraint-Handling Techniques used with Evolutionary
Algorithms: A Survey of the State of the Art,” Computer
Methods in Applied Mechanics and Engineering, vol.
191, pp. 1245-1287, 2002.

[10] Kuri, A., "A Universal Eclectic Genetic Algorithm for
Constrained Optimization," Proc. of the 6th European
Congress on Intelligent Techniques & Soft Computing,
EUFIT'98, pp. 518-522, 1998.

[11] Richardson, J.T., Palmer, M.R., Liepins, G. and Hilliard,
M. “Some Guidelines for Genetic Algorithms with
Penalty Functions,” Proc. of the 3rd International
Conference on Genetic Algorithms pp. 191-197, 1989.

[12] Michalewicz, Z. and Nazhiyath, G., “Genocop III: A Co-
evolutionary Algorithm for Numerical Optimization
Problems with Nonlinear Constraints,” Proc. of the 2nd
IEEE International Conference on Evolutionary
Computation, Perth, Australia, 29 November–
1 December, vol. 2, pp.647-651, 1995.

[13] Koziel, S. and Michalewicz, Z., “Evolutionary
Algorithms, Homomorphous Mappings and Constrained
Parameter Optimization,” Evolutionary Computation,
vol. 7, pp. 19-44, 1999.

[14] http://www.auburn.edu/~simiope/CEC04

