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Abstract-Two variants of Estimation of Distribution 
Algorithm (EDA) are tested against solving several 
continuous optimization problems with constraints.  
Numerical experiments are conducted and comparison is 
made between constraint handling using several types of 
penalty and repair operators in case of both elitist and non-
elitist implementations of the EDA’s.  Graphical display and 
animations of representative runs of the best and worst 
performers proved useful in enhancing the understanding of 
how such algorithms work.   

I.  INTRODUCTION  

Estimation of Distribution Algorithms (EDA) are 
relatively new comers to the field of Evolutionary 
Computation [1, 2].  Their appealing features over other 
evolutionary algorithms are a simple structure and an 
intuitive dynamics of the population which facilitate 
choosing the values of the control parameters.  In standard 
EDA there are no crossover and mutation operations, the 
new population being generated by sampling the 
probability distribution of a number of superior 
individuals selected from the current population.  As 
highlighted in [3], the known EDA implementations differ 
by the probability distributions employed and by the 
survival selection schemes.   

Several authors have reported on solving 
combinatorial, discrete and continuous optimization 
problems using EDA [2, 4, 5, 6].  Work remains to be 
done however on testing the capabilities of EDA in 
solving constrained optimization problems.  In this respect 
the present paper investigates the use of Univariate 
Marginal Distribution Algorithm (UMDA) and a 
Population Based Incremental Learning Algorithm 
(PBIL) on three continuous objective functions with 
constraints.  Comparison is made between constraint 
handling using penalty and repair techniques through 
numerical experimentation.   

II.  ALGORITHMS TESTED 

Two estimation of distribution algorithms have been 
implemented and tested in both elitist and non-elitist 
variants.   

A. The UMDA Algorithm 
The first algorithm considered, a Univariate Marginal 

Distribution Algorithm [3, 5], was coded in the following 
structure:   

Step 1: Generate M uniform random points within the 
imposed boundaries of the design variables [xi min… xi max] 
(i=1...n) or until at least one feasible individual has been 
generated.  The population size, M, is a constant specified 
by the user.   

repeat Step 2 and Step 3 until a certain stopping 
criteria is met;    

Step 2: Select the best N individuals in the population 
and evaluate the average and standard deviation vectors:   
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In the above formulae N is a specified integer restricted to 
1 < N < M.   

Step 3: Replace the whole current population by 
generating M normally distributed random points {xi}, 
(i=1...n) with the averages and standard deviations given 
by equations (1) and (2) respectively.  In order to ensure 
that the newly generated individuals satisfy the imposed 
side constraints, the following corrections were 
performed:   
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Additionally, a record of the best-fit individual 
generated so far is kept to be provided as solution of the 
search.   

The stopping criteria can be either attaining an 
imposed maximum number of generations Gmax or 
exceeding a prescribed maximum number of function 
evaluations NF.   

B. The PBIL Algorithm 
The second estimation of distribution algorithm tested 

was a variant of the Population Based Incremental 
Learning Algorithm [6].  The algorithm employs the same 
Steps 1 and 2 and stopping criteria listed above, but uses a 
different population-generation scheme on Step 3:   

Step 3: Generate M new points {xi}, (i=1...n, r=1...M) 
to replace the current population, using the standard 
deviations (2) and the following vector of corrected 
average values:   
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where µi are given by the same formula (1) and α is a 
variable parameter:   

( ) nw maxc GG⋅=α  (5) 
with Gc the number of the current generation and w a 
chosen constant between 0 and 1.  It is to be noticed that 
for w=0 the algorithm becomes a UMDA algorithm.  In 
order to ensure that the imposed side constraints are 
satisfied, same tests (3) are applied to the newly generated 
points.  Similarly to UMDA, the best fit individual 
encountered so far is recorded to be provided as solution 
of the search.   

In case of elitist implementations of the above two 
algorithms, further referred to as E-UMDA and E-PBIL, 
Steps 3 must be modified so that only M-1 new 
individuals are generated and the best fit individual in the 
population is not destroyed; evidently, there will no 
longer be necessary to keep a record of the best fit 
individual generated so far. 

III.  CONSTRAINT HANDLING TECHNIQUES 

There are numerous constraint handling techniques 
used in evolutionary computation as follows [7, 8, 9]: 
1) various implementations of the penalty method, 
2) specialized representations and operators, 3) repair 
algorithms, 4) separation of objectives and constraints 
(behavioral memory, superiority of feasible points, multi-
objective optimization techniques) 4) hybrid algorithms 
etc.   

Of the known constraints handling techniques, penalty 
and repair methods will be numerically tested in 
association with UMDA and PBIL algorithms described 
in the previous paragraph.   

A. Penalty methods   
Three penalty methods have been experimented with in 

this paper; all of them operate by providing some fitness 
value to the infeasible individuals in the population that 
will further help with their ranking.  Two of the 
considered methods are step-type penalties while a third 
method employs the Euclidean distance from the 
considered infeasible point to the closest feasible point as 
a measure of its infeasibility.   

1) The first penalty method tested, of the step type, will 
be further referred to as 1K-Penalty and has the form:   
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where K a constant about one order of magnitude greater 
than the expected global maxima of the constrained 
function.   Such a penalty is very easy to implement but 
has the main drawback that the search is difficult to 
initiate in case of highly constrained problems with 
landscape resembling flat plateaus with scattered 
crevasses (or only one such crevasse).   

2) A slightly more elaborate penalty method tested 
resembling the K-method in [10], further called 
vK-Penalty was:  
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with v is the number of constraints violated at point 
(x1…xn).  In this form some rough information about the 
degree of constraint violation at a certain point can be 
acquired, which can help directing the search toward the 
feasible domain.  However, as will be seen in case of the 
first test problem below, the method is less effective when 
the global optima is bounded by more than one active 
constraint.   

3) A third penalty method tested named DK-Penalty:   
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employs the distance D between the considered infeasible 
point and the closest to it feasible point in the population 
[11].  This will require evaluating the Euclidean distance 
(or of some other norm) between the current point and all 
feasible points in the population, slowing down the 
algorithm.   

B. Infeasible-individual repair   
These constraint-handling techniques require that at 

least one feasible individual exists in the current 
population.  It involves a line searching (or some other 
crossover operation) between the current infeasible point 
and a selected feasible individual in the population.  In the 
present paper the following repair methods have been 
experimented with:   

Repair 1 - repair by line search: Assign to the 
infeasible individual to be repaired the closest feasible 
individual in the population.  If there are no feasible 
individuals in the current population, the repair operation 
must be suspended and the infeasible points treated in a 
simple 1K-Penalty manner (this is the form in which the 
method was implemented in the numerical experiments 
performed).  Alternatively, in case of non-elitist 
algorithms, the best point encountered so far can be used 
as a second point for the line search operation.  After the 
infeasible-feasible pairs have been made, a random search 
is performed along the line connecting the two points until 
a second feasible point is generated to be introduced in the 
population in replace to the considered infeasible 
individual [12].   

Repair 2 - repair by crossover:  Instead of doing a line 
search, which requires a number of objective function 
evaluations, one single crossover operation can be 
performed (for example a midpoint crossover) between 
the current infeasible and its closest feasible individuals.  
Since the offspring that will replace the infeasible parent 
may in turn be infeasible, the method is more of an 
incomplete repair.   
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Repair 3 - repair by cloning:  Replace the infeasible 
individual with an identical copy of the feasible individual 
that is closes to it.  When only one or two feasible 
individuals are available in the population, in order to 
preserve diversity (particularly for elitist algorithms), it 
might become necessary to repair only part of the 
infeasible individuals (a partial repair) to avoid standard 
deviation becoming too small, or to impose a lower limit 
upon the components of the standard deviation vector.   

Combined repairs:  Combination of the above 
approaches can also be employed, like for example 
repairing half of the infeasible individuals using cloning 
and the other half using some crossover operation.   

Even if they don’t always eliminate the infeasible 
individuals, the above listed repair methods contribute to a 
favorable confinement of the population toward the 
feasible domain(s) of the search space.  Methods 2 and 3 
have the appealing feature that require less or no 
additional function evaluations.  They are also suitable in 
case of discrete or integer optimization problems, when 
the feasible space is very fragmented or is reduced to only 
scattered points.   

IV.  TEST PROBLEMS 

Several numerical experiments have been performed on 
solving three constrained objective functions.  Since 
graphical representation and animation of the successive 
populations can provide a valuable insight into how 
algorithms work, preference has been given to the 
following test functions of two variables:   

 
Figure 1.  Graph of the Sickle function   

Test Problem1 - Sickle function  
This is a slightly modified version of problem G6 in 

reference [13] which requires minimizing the function:   
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and the side constraints:   
5.15x14and10x0 21 ≤≤≤≤  (11) 

In its original form [13], the side constrains were over 10 
times wider, making the ratio between the feasible and the 
infeasible spaces very small and therefore a starting 
feasible point hard to find.  The global minimum point is 
located at x1=14.095 and x2=0.84296 for which the 
function value is -6961.8139 and both constraints are 
active.  The maximum point, also double bounded, is 
located at x1=14.095 and x2=9.15704 and equals -
1206.13556.  As shown by the plot in Figure 1, the 
feasible domain of this function is not convex.   

 
Figure 2.  Graph of Koziel and Michalewicz’s G6 function   

Test Problem2 - Koziel and Michalewicz G6 function   
This second problem [13] requires finding the 

maximum point of:   
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and the side constraints (modified as compared to the 
original form in [13] for the same reason as before):   

1.2x9.0and2.5x2.3 21 ≤≤≤≤  (14) 
This multimodal function has its global maximum at 
x1=1.24539 and x2=4.2425 and equals 0.09582504.  The 
global minimum is located at x1=1.24492 and x2=3.74154 
where the function value is -0.10363448.  Both the global 
minimum and the global maximum points are unbounded 
i.e. they are located inside the feasible domain (Figure 2).   

Test Problem3 - Keane’s function   
The third test problem, due to Keane, also listed as 

problem G2 in [6], requires minimizing the function:   



 4

∑
∏∑

=

==

⋅

−
=

n

i
2
i

n

i i
n

i i

n
i

1

1
2

1
4

1
x

)x(cos2)x(cos
)x...x(F  (15) 

subjected to:   

0x75.0g

05.7xg

12

11

≤−=

≤−=

∏
∑

=

=

n

i i

n

i i n
 (16) 

and to the side constrains:   
nii ≤≤≤≤ 1for10x0  (17) 

This is a highly multimodal function that has its global 
minimum constrained by g2.  For n=2 its optimum equals 
-0.36497974 and occurs for x1=1.60086 and x2=0.468498.  
According to [6], for n=20 the minimum value found so 
far equals -0.8036.   

 
Figure 3.  Graph of Keane’s function with n=2   

V.  NUMERICAL RESULTS 

A set of numerical experiments have been conducted to 
test the capabilities of the Estimation of Distribution 
Algorithms and constraint handling techniques presented 
and the results are summarized in Tables 1-3.   

No attempt has been made during these experiments to 
fine tune the N, M or w parameters so that performances 
are maximized (in all cases N=50, M=25 and w=1 while 
the stopping criteria was limiting the maximum number of 
function evaluations to NF=5000).  The main purpose of 
these tests was to identify some promising combinations 
of Estimation of Distribution Algorithms and constraint 
handling techniques, their potential for improvement and 
reasons why they performed or did not perform well.   

Problem 1 has a non-convex feasible space with only 
one minimum and one maximum (both double 
constrained).  It is therefore not surprising that the elitist 
E-UMDA (and E-PBIL algorithm) with line-search repair 
performed well.  This is because only feasible individuals 
were sampled during the search and the monotonicity of 
the function favored a constant downhill migration of the 
population.   

TABLE I. RESULTS OBTAINED FOR 500 RUNS OF 
PROBLEM 1 FOR M=50 AND N=25 (KNOWN GLOBAL 

OPTIMUM: -6961.81) 
Algorithm Constr. 

Handling 
Best Average Worst 

E-UMDA Repair 1 -6945.91 -5607.47 -2997.05 
E-PBIL Repair 1 -6943.65 -5763.21 -3509.77 
UMDA Repair 1 -6939.16 -5553.78 -3372.03 
E-UMDA vK-Pen. -6930.03 -5104.47 -2480.90 
E-PBIL vK-Pen. -6912.24 -5159.63 -2249.93 
PBIL 1K-Pen . -6911.18 -5076.39 -2585.59 
E-PBIL 1K-Pen . -6903.78 -5244.17 -3117.43 
E-PBIL DK-Pen. -6895.40 -5184.25 -2617.83 
PBIL Repair 1 -6892.11 -5661.05 -3373.31 
E-UMDA Repair 2 -6881.54 -4978.97 -1454.95 
UMDA Repair 3 -6874.920 -4135.440 -1321.91 
E-PBIL Repair 2 -6871.597 -5018.764 -1973.91 
PBIL Repair 2 -6870.774 -5050.324 -1636.22 
UMDA Repair 2 -6869.215 -5008.144 -1862.65 
E-UMDA DK-Pen. -6860.034 -5068.846 -1542.06 
UMDA DK-Pen. -6857.924 -5092.668 -2886.64 
PBIL vK-Pena. -6847.324 -5120.544 -2624.04 
E-UMDA 1K-Pena . -6836.38 -5048.02 -2218.117 
E-PBIL Repair 3 -6821.19 -4113.49 -1286.33 
E-UMDA Repair 3 -6813.79 -4148.39 -1279.73 
PBIL Repair 3 -6763.21 -4187.59 -1396.38 
UMDA vK-Pen. -6755.85 -5095.72 -1776.14 
PBIL DK-Pen. -6677.15 -5132.26 -2123.77 
UMDA 1K-Pen. -6674.55 -5125.19 -2680.86 

This is also illustrated by Figure 4-top where are 
plotted superimposed the individuals in all generations 
during one run of the E-UMDA + Repair 1 algorithm (less 
the intermediate points occurring during line searches).   

The runs illustrated by the plots in Figures 4 (and also 
in Figures 5 and 6) were considered representative in that 
the best fitness found during the respective searches were 
very close to the average value recorded in Tables 1-3  

Figure 4.  Superimposed plots of the points generated 
during one run of E-UMDA + Repair 1 (top) and UMDA + 
1K-Penalty (bottom) algorithms on Test Problem 1.   
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(for Figure 4 these fitness values were -5612 vs. -5607 
and -5133 vs. -5125).   

The same frames plotted superimposed in Figure 4-up 
were animated and are available as wmv files at [14] (or 
upon request from the first author).  From these 
animations it can be seen that the best fit individual 
emerged (most likely following a repair operation) during 
the second generation and was preserved unchanged all 
the way to the end of the run.  As the search progressed, 
the rest of the population slowly moved toward this best 

fit individual.   
The animation also reveals that imposing the repair 

search to be performed along the line pointing in the 
direction of the closest feasible individual the 
displacement of the population parallel to the boundary of 
the feasible space is significantly diminished.  One 
remedy towards an increased exploration of the areas 
parallel to the boundaries of the feasible space (other than 
changing the line-repair strategy) can be to force (directly 
or indirectly) the components of the standard deviations 
vector to stay large during the first few generations.   

As visible from Figure 4–bottom, the UMDA algorithm 
with 1K-Penalty (that was ranked last) had difficulties in 
maintaining a pool of feasible individuals in the 
population and was therefore unable to direct the search 
toward promising areas of the design space.  The wmv 
animation file in [14] generated using the same data as for 
Figure 4-bottom also shows that the actual solution 
(labeled -5132.5) was generated during the early 
generations, but no further exploration was performed in 
that same area.   

Problem 2 Since the global maximum for this problem 
is not bounded, the constraint handling technique 
employed has very little effect upon the evolution of the 
population after several generations have passed, when 
more important become the hill climbing capabilities of 
the basic EDA employed.  The elitist EDA’s particularly 
the E-PBIL algorithm exhibits such traits and 
consequently performed better (although the favorable 
effect of a wider initial sampling of the landscape proved 
beneficial as the results in Table 2 show).   

Least performers were the non-elitist EDA algorithms 
using cloning repair (and repair in general).  Repair 
operations have the effect of reducing the variability of 
the initial populations by forcing its individuals inside the 
feasible space.   

TABLE 2. RESULTS OBTAINED FOR 500 RUNS OF 
PROBLEM 2 FOR M=50 AND N=25 (KNOWN GLOBAL 

OPTIMUM: 0.095825) 
Algorithm Constr. 

Handling 
Best 

 
Average Worst 

E-PBIL vK-Pen. 0.095825 0.090999 0.019106 
E-PBIL DK-Pen. 0.095825 0.090982 0.018469 
E-PBIL 1K-Pen.  0.095825 0.090354 0.029143 
E-PBIL Repair 1 0.095825 0.089778 0.025175 
E-PBIL Repair 2 0.095825 0.089659 0.028708 
E-UMDA vK-Pen. 0.095825 0.089549 0.027295 
E-UMDA 1K-Pen.  0.095825 0.089199 0.037292 
E-UMDA DK-Pen. 0.095825 0.088951 0.027408 
E-UMDA Repair 2 0.095825 0.088107 0.025067 
PBIL DK-Pen. 0.095825 0.086992 0.022776 
UMDA vK-Pen. 0.095825 0.086738 0.019890 
PBIL vK-Pen. 0.095825 0.086693 0.026722 
UMDA DK-Pen. 0.095825 0.086221 0.027787 
UMDA 1K-Pen.  0.095825 0.086214 0.021905 
PBIL 1K-Pen.  0.095825 0.086196 0.024969 
PBIL Repair 1 0.095825 0.086046 0.023640 
PBIL Repair 2 0.095825 0.085759 0.036746 
UMDA Repair 2 0.095825 0.085409 0.024786 
E-PBIL Repair 3 0.095825 0.082726 0.001645 
E-UMDA Repair 1 0.095825 0.082144 0.024559 
UMDA Repair 1 0.095825 0.079079 0.018287 
E-UMDA Repair 3 0.095825 0.078868 0.013925 
PBIL Repair 3 0.095825 0.075557 0.012989 
UMDA Repair 3 0.095825 0.074724 0.016606 

Figures 5-top and the wmv file available on [14] show 
the ascending path followed by the successive populations 
in case of the E-PBIL+vK-Penalty algorithm leaded by the 
best-fit individual.  However, because of the standard 
deviations becoming too small, this ascent ended 
prematurely, suggesting again that the standard deviation 
should be kept at larger values longer periods of time.  On 
the other hand, as Figures 5-bottom shows, the run of the 
UMDA algorithm with clone repair was trapped in the 
neighborhood of a bounded local-optima without being 
able to advance towards it.   

Problem 3 Was a difficult one to solve due to the 
global optima being constrained and of the numerous local 
optima.  Again the elitist E-PBIL algorithm performed 

Figure 5.  Superimposed plots of the points generated during 
one run of E-PBIL + vK-Penalty (top) and UMDA + Repair 
3 (bottom) for Test Problem 2.   
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better (see Table 3), this time in association with a line-
search and crossover infeasible individual repair 
(remember that crossover repair is a variant of the line-
search repair).  It becomes evident that the favorable hill 
climbing characteristics of the E-PBIL algorithm were 
augmented by the boundary exploration capabilities 
provided by the repair method.   

As happed before, and visible from Figure 6-up and the 
movie file available on [14], the search lost momentum 
due to a premature reduction to very small values of the 
components of the standard deviation vector.   

For this third test problem, the lowest ranked was the 
elitist UMDA algorithm coupled with a DK-Penalty.  The 
sample run shows an interesting behavior, in which the 
best fit individual is trapped around of a local optima and 
the rest of the population swarms around another slightly 
lower optima.  After viewing the animated files generated 
with the same data as in Figure 6 below, it becomes 
obvious that the swarming can go forever because the 
standard deviation can neither go to zero nor increase 
enough so that the swarming population can join with the 

best fit individual trapped on the neighboring local 
optima.   

TABLE 3. RESULTS OBTAINED FOR 500 RUNS OF 
PROBLEM 3 WITH n=2 FOR M=50 AND N=25 (KNOWN 

GLOBAL OPTIMUM: -0.3649797) 
Algorithm Constr. 

Handling 
Best 

 
Average Worst 

E-PBIL Repair 1 -0.3649797 -0.239162 -0.133003 
E-PBIL Repair 2 -0.3649797 -0.235662 -0.109429 
E-PBIL 1K-Pen.  -0.3649796 -0.224695 -0.109429 
E-PBIL Repair 3 -0.3649793 -0.223351 -0.107983 
E-PBIL DK-Pen. -0.3649722 -0.226574 -0.109418 
E-PBIL vK-Pen. -0.3649683 -0.227550 -0.133230 
PBIL Repair 1 -0.3649352 -0.211658 -0.109323 
E-UMDA Repair 1 -0.3639721 -0.206205 -0.101459 
UMDA Repair 2 -0.3619513 -0.205715 -0.110912 
PBIL vK-Pen. -0.3606485 -0.199515 -0.101611 
E-UMDA vK-Pen. -0.3600499 -0.200429 -0.109429 
UMDA Repair 3 -0.3544603 -0.192459 -0.099642 
UMDA Repair 1 -0.3529160 -0.203255 -0.100988 
E-UMDA Repair 2 -0.3528012 -0.207182 -0.117033 
UMDA 1K-Pen. -0.3526836 -0.200672 -0.121185 
PBIL Repair 3 -0.3525017 -0.196533 -0.099643 
PBIL DK-Pen. -0.3505644 -0.20042 -0.108292 
PBIL Repair 2 -0.3493383 -0.208814 -0.104155 
E-UMDA Repair 3 -0.3474485 -0.196391 -0.108942 
E-UMDA 1K-Pen. -0.3461925 -0.200399 -0.109136 
UMDA vK-Pen. -0.3434922 -0.195404 -0.114145 
UMDA DK-Pen. -0.3397125 -0.199832 -0.103815 
PBIL 1K-Pen. -0.3231532 -0.197422 -0.105956 
E-UMDA DK-Pen. -0.3087370 -0.197603 -0.107092 

VI.  CONCLUSIONS 

Two Estimation of Distribution Algorithm viz the 
Univariate Marginal Distribution Algorithm and a variant 
of the Population Based Incremental Learning Algorithm 
were coded and tested in both elitist and non-elitist 
variants upon solving three continuous test objective 
functions with constraints.   

Since no attempt has been made to maximize the 
performances of any of the algorithms tested, no definitive 
conclusion can be drawn upon which implementation and 
constraint handling method is the most effective, the 
results described herein being rather preliminary.  Further 
experiments will be required to confirm that elitist ED 
algorithms coupled with line-search repair techniques are 
more effective in case of multimodal problems or where a 
bounded optima is supposed to exist.   

There were some suggestions that the function’s local 
landscape and the way the current population is 
distributed in this landscape should not dictate alone the 
probability distribution used in generating the new 
individuals.  When normal distributions are used, forcing 
the standard deviation values to remain relatively large 
during a longer period of the search is likely to improve 
performance by avoiding “sinking” the population 
prematurely into a local optimum area.  Another 
phenomenon that can be avoided by controlling the 
standard deviation values is the localized swarming in 

Figure 6.  Superimposed plots of the points generated during 
one run of E-PBIL + Repair 1 (top) and E-UMDA + 
DK-Penalty (bottom) algorithms over test problem 3 with 
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case of elitist algorithms applied to multimodal functions 
(as it was the case of test problem 3), when the best fit 
individual is trapped on one local optima while the rest of 
the population swarms around a neighboring lower 
optima.   

Conversely, the same as the gradient value can be used 
as stopping criteria in deterministic optimization 
algorithms standard deviation values can be used as 
stopping criteria in EDA’s.  This was suggested by some 
of the numerical examples investigated, when the main 
part of the search was spent by generating (almost) 
identical individuals due to standard deviation vectors 
becoming almost zero.   
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