
 
 

 

  

Abstract—A new approach to solving constrained nonlinear 
programming problems using evolutionary computations is 
discussed.  According to the method two populations are 
evolved, one population (females) is evolved inside the feasible 
domain of the design space and a second population (males) is 
evolved outside this feasible domain.  Both populations can be 
independently subject to crossover and mutation operations 
and the design space explored.  Female-male crossover however 
ensures the desirable increase in the search pressure upon the 
boundaries of the feasible space - it is known that in many 
optimization problems the global optimum is bounded.  The 
experiments performed on three test objective functions of two 
variables show some promise of the proposed approach in that 
it can cope with both linear and nonlinear constraints and with 
nonconvex feasible domains.   

I. INTRODUCTION 
HE general nonlinear programming (NLP) problem 
requires finding the optimum point (minimum or 

maximum) of a function of n real variables:   
)1()x,...x,...x(F 1 nini ≤≤  (1) 

subject to the following side constraints:   
)1(maxmin nixxx iii ≤≤≤≤  (2) 

and inequality and equality constraints:   
)1(0)x,...x(g 1 mjnj ≤≤≤  (3) 

)1(0)x,...x(h 1 pjnj ≤≤= . (4) 

Since equality constraints can be embedded in the objective 
function using penalty methods, or can be eliminated 
together with some of the variables [1],[2], only NLP 
problems subject to inequality constraints will be discussed.   

In recent years many researcher have reported on solving 
the general NLP problem using evolutionary algorithms [3]-
[7].  One of the main differences between various 
approaches lay in constraint-handling the techniques 
employed as follows: 1) various implementations of the 
penalty function method, 2) specialized representations and 
operators, 3) repair algorithms, 4) separation of objectives 
and constraints (behavioral memory, superiority of feasible 
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points, multi-objective optimization techniques) 5) hybrid 
algorithms etc.   

According to [6],[7], one of the main reasons for 
difficulties in locating the global solution is the inability of 
evolutionary systems to search precisely the boundary area 
between the feasible and infeasible region of the search 
space.  It is known that in many constrained optimization 
problems, some of the constraints are active at the global 
optimum point, making it more difficult to locate.   

The present paper proposes a two-population evolutionary 
computation approach that aims at increasing the search 
pressure upon the boundaries of the feasible space.  This is 
done by evolving one population of feasible individuals, and 
a second population of infeasible individuals.  The 
individuals evolving inside (including the boundaries of the 
feasible space) are called females, while the individuals 
evolved outside the feasible space are called males.  The 
female and male populations can be subject to asexual 
crossover and independent mutation (but not necessarily).  
The boundary-search effect however is ensured by female-
male crossover, which can be performed between two or 
more feasible and infeasible individuals, and with, or 
without, favoring the better fit females or the better ranked 
males.  Male ranking can be done based on the number of 
constraints they violate, on their mating successes or on their 
capacity of generating (superior) offspring.   

Segregated, speciated and multi-population evolutionary 
models have been proposed by a number of researchers in 
the past [8]-[16].  It is believed however that this is the first 
time when two populations, one of feasible and one of 
infeasible individuals, are distinctively evolved, and that 
these two populations interact systematically (rather than 
occasionally) for the purpose of exploring the boundaries of 
the feasible space.  Since the criterion based on which 
individuals are assigned to the two populations does not 
change during evolution, the behavior of the two 
populations is easier to understand.  Visualizations of the 
two populations (as accumulated graphs and animated 
frames) as they explore the landscape of several test 
objective functions of two variables, are also provided in the 
paper.  Such visualizations can further enhance the 
understanding of how various implementations of the 
algorithm work, helping with parameter tuning (which is 
known to be an optimization problem in itself).  

II. GENERAL DESCRIPTION OF THE ALGORITHM 
Implementations of the proposed approach will be further 

named female-male evolutionary algorithms, or F-M(μF,μM) 
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in short, where μF is the size of the female population and 
μM is the size of the male population.   

A general structure of the algorithm is given below, with 
the observation that the square-bracketed steps, or portions 
of a step, can be omitted in some implementations:   

Step 1) Generate the initial female population of μF 
individuals and the male population of μM individuals;   
repeat   

Step 2: [Rank females];   
Step 3: [Rank males];   
Step 4: [Mutate females];   
Step 5: [Mutate males];   
Step 6: Make female-male pairs and generate offspring;   
Step 7: Select survivors;   

until a certain Stopping Criteria is met.   

The following is a more detailed discussion of the steps 
introduced above:   

Step 1: Uniform random points are generated within the 
extended intervals:   

[ ] )1(xx,xx RmaxLmin nibb iiii ≤≤Δ⋅+Δ⋅−  (5) 

where  
( )minmax xxx iii −=Δ . (6) 

Coefficients bL and bR (usually between 0 and 1) control the 
amount in which the infeasible space is expanded so that a 
male population can be generated and evolved, even when 
only side constraints are imposed to the optimization 
problem.  If additional constraints are present, the infeasible 
region may be sufficiently large and the respective 
coefficients can be set to smaller values, including zero.  If 
desired, different bL and bR coefficients can be assigned for 
different variables xi, as well as extending only the lower 
boundaries or only the upper boundaries from their initial 
values ximin and ximax.  Evidently, when the objective 
function is evaluated, the side constraints are verified as they 
were posed in the original problem.   

If a randomly generated individual belongs to the feasible 
region of the design space (i.e. no constraints are violated), 
then it will be assigned to the female population, else will be 
assigned to the male population.  The process continues until 
μF females and μM males are generated.   

As the program iterates toward generating the initial 
female and male populations, further useful information 
about the problem at hand can be acquired:  For example, 
the ratio of the size of the feasible-space over the total size 
of the search space can be estimated.  This ratio, noted ρ, 
was determined experimentally in [5], prior to solving the 
optimization problem, by generating a large number of 
uniform random points inside the search space and counting 
the number of occurrences of feasible points from the total 
number of points generated.  Knowledge about this ratio can 
be used in female-male crossover schemes, or in 
dynamically adjusting the upper and lower limits of the 
search space, so that the probabilities of randomly 
generating female and male individuals are balanced.   

On the other hand, if ρ remains zero after a given large 
number of function-calls, it is a sign that the optimization 
problem is highly-constrained and the user can be prompted 
to reformulate it, or to provide at least one initial feasible 
point to the algorithm.  In more elaborate implementations, 
similar to [17],[18], the infeasible individuals can be ranked 
based on the number of constraints they violate and evolved 
using asexual crossover and/or mutation operations, until an 
initial pool of feasible individual are generated, so that the 
algorithm can continue with the iteration of Steps 2-7.   

Step 2 (optional step): Rank females based on their 
fitness, using one of the known deterministic or stochastic 
procedures (i.e. complete sorting, partial sorting, roulette 
wheel, tournament selections etc.), or the step can be limited 
to identifying the best-fit female only which will be further 
called α-female.   

Step 3 (optional step): Rank males based on the number 
of constraints they violate, on their capacity to generate 
[improved] offspring, on their mating successes (number or 
“quality” of mates), or simply assign to them the rank of the 
[best fit] female they mated with.   

Step 4 (optional step): Mutate females by replacing [the 
worst ranked] pF % females with randomly generated new 
females.  If female ranking was performed, the newly 
created females can take the rank of the females they replace 
(rank inheriting), or Step 2 can be applied one more time 
until every female has a rank of her own.  If no female 
ranking is performed, then females are mutated at random 
with, or without preserving the α-female.   

Step 5 (optional step): Mutate males (the same as it was 
done with the female population), with a mutation rate of 
pM %, with or without preserving the α-male (the male that 
mated during the previous step with the α-female).  If no 
male ranking was performed, simply mutate at random pM % 
of the male population.   

Step 6 : Form female-male pairs by assigning [at least] 
one male to each female based on their closeness in the 
n-dimensional Euclidean space.  If females ranking was 
applied, then females can choose their mates in a rank-
decreasing order.  In some implementations further called 
monogamous-male algorithms, once a male has been 
assigned to a female, the respective male will not be 
available for further mating during the same generation.  In 
other implementations called polygamous-males algorithms, 
males are permitted to recombine with more than one 
female.  It is obvious that for monogamous-male algorithms 
with μF>μM, there will be some females that will not 
participate in the crossover operation, while for 
polygamous-male algorithms this can be avoided.  
Polygamous-male algorithms can be unrestricted i.e. a male 
can crossover with any number of females, or restricted 
when the number of crossovers a male can perform in one 
generation is limited to a fraction of the total female 
population.   

After female-male pairs are formed, offspring are 
generated using one of the known crossover schemes [16].  
The offspring can result inside the feasible space (viz. they 
are females) or outside the feasible space (viz. they are 



 
 

 

males).  Alternatively, a [random] search can be performed 
along the direction connecting the female with her pair male, 
until one female and/or one male offspring are generated to 
replace either one or both parents.   

It is to be expected that in unrestricted polygamous-male 
algorithms, where females mate with their closest males, the 
offspring will rapidly migrate towards the feasible-
unfeasible boundary region (particularly if midpoint 
crossover or other convex combination scheme is 
employed), which can lead to a stagnation of the two 
populations.  In order to reduce this phenomenon and ensure 
an exploration of the design space parallel to the feasible-
unfeasible boundary, multi-parent recombination [19], 
mutation operations and/or asexual crossover could be 
applied.  In some instances however this can be a favorable 
characteristic which can be used in conducting [final] 
localized searches, (by adding that “killer instinct” most 
evolutionary algorithms lack), or in conducting post-optimal 
constraint-activity analyses.   

Conversely, monogamous-male algorithms have the 
inherent property that the search is performed both towards 
and parallel to the feasible-infeasible boundary, which 
ensures a better global searching capability.   

Step 7: For convenience, the selection step should be 
performed as offspring are generated rather than a distinct 
step, following one of the rules:  If the child results outside 
the feasible space, then he may or may not replaces his 
father.  If the child is a female, she replaces her mother 
either unconditionally or only if the child has a better fitness 
than that of the mother.  In polygamous-male type 
implementations of the algorithm, both parents can be 
replaced, or only the mother (either unconditionally or only 
if there is a fitness improvement between mother and child).   

Stopping Criteria: Steps 2 through 7 are repeated until 
an imposed condition is satisfied; this can be exceeding a 
maximum number of function calls, attaining a given 
threshold fitness, or recording the same α-female over a 
given number of generations.   

III. TEST FUNCTIONS 
The effectiveness of one monogamous male and one 

polygamous male implementations of the F-M(μF,μM) 
algorithm was tested against solving the following three 
problems:   

The first two test problems require minimizing the 
classical Rosenbrock's function:  

2
1

22
1221 )1x()xx(100)x,x(F −+−⋅=  (7) 

subject to the following constraints:   
.3x1and2x2 21 ≤≤−≤≤−  (8) 

0)x,x(gAND0)x,x(g 212211 ≤≤  for problem 1 (9) 

0)x,x(gOR0)x,x(g 212211 ≥≥  for problem 2 (10) 

with g1 and g2 cubic and linear functions as follows:   

2xx)x,x(g
1x)1x()x,x(g

21212

2
3

1211

−+=
+−−=  (11) 

Both problem 1 and 2 have their global minimum equal to 0 
located at (1,1) where g1 and g2 are active.  The feasible 
space of problem 2 is convex, while that of problem 1 is not 
(see also Appendix).  In case of problem 1 there is also a 
local minima equal to 1 at (0,0) where only g1 is active.   

The third test problem from [17] requires minimizing:   

∑
∏∑

=

==

⋅

−
=

n

i
2
i

n

i i
n

i i

n
i

1

1
2

1
4

1
x

)x(cos2)x(cos
)x...x(F  (12) 

subject to:   
nii ≤≤≤≤ 1for10x0  (13) 

and  

0x75.0g

05.7xg

12

11

≤−=

≤−=

∏
∑

=

=

n

i i

n

i i n
 (14) 

This is a highly multimodal function the optimum of which 
is constrained by g2 only.  For n=2 the known optimum 
-0.36497974587 occurs for x1=1.60086042842878 and 
x2=0.46849805684566.   

IV. NUMERICAL RESULTS 
(1) The female monogamous-male algorithm, or 

F-mM(μF,μM) in short, was implemented and tested in the 
following form:   

Step 1: Generate the initial μF female and μM male 
populations by uniform random generating points within the 
extended intervals.   

Repeat Steps 2-7 below, until NF function calls has been 
exceeded (NF=4000).   

Step 2: Do a complete sorting of the female population 
based on fitness.   

Step 3: If a new α-female emerged, then skip Step 4 for 
ns successive generations (ns was set equal to the number of 
variables of the objective function).  This will allow the 
search to further advance toward a possible bounded 
optimum, undisturbed by mutation.   

Step 4: Generate uniform random points (feasible or 
infeasible) within the extended intervals.  Replace with these 
newly generated random points some of the female 
individuals, starting with the worst fit female, and at random 
some of the male individuals until pF % new females are 
replaced OR pM % new males are replaced.  (The OR 
operator ensures that no unnecessary function calls are 
made, although some coupling between the interval 
expansion coefficients bL and bR and the mutation rates pF 
and pM is introduced.  The polygamous-male implementation 
of the algorithm, that will be described next, employs a 
slightly different mutation step, which avoids such a 
coupling and which can be used in this present algorithm as 
well).   



 
 

 

Step 5: Make female-male pairs starting with the best fit 
female, such that the current female recombines with the 
closest available male.  Once a male has been assigned to a 
female, he will not be allowed to mate again during the same 
generation.  Evidently, if μF≠μM then either some of the 
worse fit females or some of the distant-from-the-boundary 
males will not participate in the crossover operation.   

Step 6: Apply a mid-point crossover between the female 
and the male in every pair;   

Step 7: If the offspring is a female, she replaces her 
mother unconditionally, less if the mother is the α-female, 
case in which the replacement takes place only if a new best-
fit female emerged.  If the offspring is a male, he always 
replaces his father.   

The results obtained for 1000 runs over the above three 
test problems were summarized in Table I.  In case of 
problem 1, for about 3% of the runs the algorithm converged 
to the (0,0) local optimum rather then the global optimum 
(Fig. 1).  For problem 2, the 1000 solutions found are 
moderately dispersed along the curved valley which harbors 
the (1,1) optimum point (Fig. 2-above), suggesting that the 
algorithm has some capability of identifying unconstrained 
optima, not only bounded global optima.  For problem 3, all 
1000 solutions appear clustered along the boundary close to 

where the global optimum is located (Fig. 2-below).   
From Figure A1 in Appendix, which shows superimposed 

on the function graph all male and female individuals from 
one sample run, it can be seen that the search was performed 
evenly over the boundary of the feasible space, with some 
occasional clustering.  These graphs also indicate that by 
properly choosing the values of the boundary-expansion 
coefficients bL and bR (as it was done in case of problem 3), 
it is possible to voluntarily direct the search in certain areas 
of the design space.   

(2) The female-polygamous-male algorithm or F-pM 
(μF,μM), was implemented in a restricted form, with the goal 
of enhancing its global searching capabilities, as follows:   

Step 1: Generate the initial μF female and μM male 
populations by uniform random generating points within the 
extended intervals.   

Repeat Steps 2-6 below, until NF function calls has been 
exceeded.   

Step 2: Do a complete sorting of the female population 
based on fitness.   

Step 3: Make female-male pairs beginning with the best 
fit female, such that the current female recombines with the 
closest available male.  Male are not allowed to mate more 

TABLE I  
RESULTS OBTAINED WITH THE FEMALE-MONOGAMOUS-MALE ALGORITHM 

FOR 1000 TRIALS ON PROBLEMS 1, 2 AND 3  

 Problem 1 Problem 2 Problem 3 
bL 0.1 0.1 0.2 
bR 0.1 0.1 0.0 
μF 20 20 20 
μM 15 15 15 
pF 15% 15% 25% 
pM 35% 35% 30% 
NF 4000 4000 4000 

Generations 196 196 187 
F best 0.000000586 0.000000037 -0.364979727 

g1 -0.000013317 0.000069561 2.930685128 
g2 -0.000018270 -0.000094797 0.000000028 

F worst 1.290982881 0.262304861 -0.306763216 
g1 -0.000007618 -0.565534200 13.077046033 
g2 -2.067034206 -0.817545972 0.000007806 

F average 0.10283541 0.03382733 -0.36078237 

trials

F(x  ,x  )1    2

x 
 ,x 1  

   
2

x2
x1

F

Fig. 1 Results obtained after1000 runs of the F-mM(μF,μM) algorithm for 
test problem 1 sorted by the best fitness found.  The search converged to the 
global optimum point (1,1) for 96.9% of the trials.  

1x

x2
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Fig. 2 Results obtained after 1000 runs of the F-mM(μF,μM) algorithm 
for test problems 2 (above), and test problem 3 (below). 



 
 

 

than M times during the same generation.  It means that for 
μF>M⋅μM, some of the worse fit females will not take part in 
crossover.  In the numerical tests performed, M was set to a 
constant value equal to μF/3.  M can be assigned any value 
between 1 and μF; this will change the characteristics of 
algorithm from a monogamous-male all the way to an 
unrestricted polygamous male algorithm.  Preliminary 
investigations show that there is some promise in doing this 
adjustment during the search, in an adapting fashion, 
controlled by the number of successive generations that 
preserve the same α-female.   

Step 4: Apply a mid-point crossover between the female 
and male forming a pair.   

Step 5: If the offspring is a female, she replaces her 
mother only if there is an improvement in fitness.  The male 
population does not change during crossover; though the 
males that mated with the best and the second best fit 
females (called the α-male and the β-male) will be marked 
so that they can receive different treatment during the 
mutation step (see Step 6).   

Step 6: If the α-female did not change during Step 5, then 
the two populations are subject to mutation as follows:  
Generate pFM(μF+μM) uniform random points (feasible or 
infeasible) within the extended intervals.  Use these random 

points to replace the existing females starting with the worst 
fit female (female population ranking performed at Step 2 is 
assumed unchanged), and replace the existing males at 
random, but only after the α-male and the β-male are 
replaced (the β-male is the male ranked second).   

The results obtained for 1000 runs in case of the same test 
problems are summarized in Table 2 and Figs. 3 and 4.  For 
NF=4000 the success rates, variability of results and 
accuracy were lower than before for all three problems 
tested.  This should not be automatically interpreted as a 
lack of merit of the proposed implementation, nor of the 
polygamous algorithms in general (which must performed 
additional function calls required by the directional 
searches).  Actually the authors of the present paper 
experienced some promise with an unrestricted variant of 
the female-polygamous-male algorithm, showing that 
further investigation is needed before a final verdict can be 
reached.   

Figure A2 in Appendix shows all male and female 
individuals for one complete run for the considered test 
problems (less the intermediate points generated during the 
directional searches).  It can be seen that the clustering is 
now more prominent in the promising areas of the search 

TABLE II  
RESULTS OBTAINED WITH THE FEMALE-POLYGAMOUS-MALE ALGORITHM 

FOR 1000 TRIALS ON PROBLEMS 1, 2 AND 3  

 Problem 1 Problem 2 Problem 3 
bL 0.1 0.1 0.2 
bR 0.1 0.1 0.0 
μF 20 20 8 
μM 6 50 9 
pFM 25% 50% 25% 
NF 4000 4000 4000 

Generations 41 35 129 
F best 0.000041251 0.000000882 -0.364950490 

g1 -0.000048463 0.000811285 12.928955299 
g2 -0.000248143 -0.001173672 0.000043306 

F worst 1.215703072 0.516990985 -0.271542669 
g1 -0.016550336 -0.573121612 12.924986606 
g2 -1.940283631 -1.634762423 0.005108947 

F average 0.27181687 0.07094794 -0.36197287 

trials

F(x  ,x  )1     2

x 
 ,x 1  

   
2

x2

x1

F

Fig. 3 Results obtained for 1000 trials of the F-pM(μF,μM) algorithm for test 
problem 1 sorted by the best fitness found.  The search converged to the 
global optimum point (1,1) for 83.2% of the trials.  
.   
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Fig. 4 Results obtained after 1000 runs of the F-pM(μF,μM) algorithm 
for test problems 2 (above) and test problem 3 (below).   



 
 

 

space for all three test functions, suggesting that this F-pM 
algorithm has indeed some favorable traits.   

V. CONCLUSIONS AND FURTHER STUDIES 
A new approach for solving constraint nonlinear 

programming problems using a co-evolutionary algorithm 
was described.  The main goal was to induce an increased 
exploratory pressure upon the boundaries of the feasible 
domain, and it was ensured by the interaction between the 
feasible and infeasible individuals forming two distinct 
populations called females and males respectively.   

Searching capabilities inside the feasible space and 
parallel to the feasible-infeasible boundary were induced by 
mutating the female and male populations and limiting the 
maximum number of mates a male can have during the same 
generation.  BLX crossover [20] between females and males 
(rather then the midpoint crossover as currently 
experimented with), can also be employed in order to 
enhance the global searching capabilities of the algorithm.   

One merit of the proposed approach is that the constraints 
are handled in a very simple form (when evaluated outside 
the infeasible region the objective function simply returns a 
constant large value).  However, for highly constrained 
problems where a starting feasible point is not available, 
male ranking based on the number of constraints they violate 
can be applied, and asexual crossover performed within the 
infeasible population, until a small pool of feasible 
individuals emerge.   

Two variants of the algorithm called monogamous-male 
and restricted-polygamous-male algorithms were tested 
against minimizing three constrained objective functions and 
some encouraging results obtained.   

Since no penalty factor is involved in constraint handling, 
a clear distinction is made between the feasible and 
infeasible individuals.  This trait, coupled with a small 
number of parameters to be adjusted at the beginning of the 
run make the proposed approach easy to comprehend by the 
inexperienced user, particularly if graphical representations 
and animations are studied for two dimension optimization 
problems as discussed in this paper.   

Numerous other variants of female-male evolutionary 
algorithms remain to be implemented and tested, making 
them very appealing, similar to pair-figure-skating which is 
considered (at least by some viewers), more entertaining 
than individual elite skating.   

APPENDIX 

Fig. A1 shows superimposed plots of all the female 
(circles) and males (diamonds) generated for one run of the 
F-mM(μF,μM) algorithm in case of test problems 1 (top), 
problem 2 (middle) and problem 3 (bottom).  Fig. A2 shows 
superimposed plot of all the female (circles) and males 
(diamonds) generate for one run of the F-pM(μF,μM) 
algorithm in case of test problems 1 (top), problem 2 
(middle) and problem 3 (bottom).  (The points generated 
during the directional searches were not represented).   

 
Fig. A1 



 
 

 

Animation files of the successive populations used to 
generate Figs. A1 and A2 are available upon request.   
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