Chapter 3 Descriptive Statistics: Numerical Measures

- q Measures of Location
- q Measures of Variability

Measures of Location

- 🕨 q Mean
 - g Median
 - q Mode
 - q Percentiles
 - q Quartiles

If the measures are computed for data from a sample, they are called <u>sample statistics</u>.

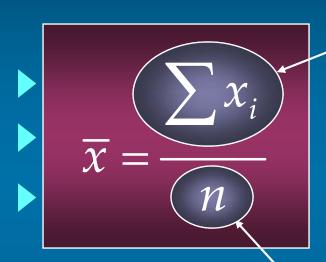
If the measures are computed for data from a population, they are called <u>population parameters</u>.

A sample statistic is referred to as the <u>point estimator</u> of the corresponding population parameter.

Mean

- q The mean of a data set is the average of all the data values.
- The sample mean \bar{x} is the point estimator of the population mean μ .

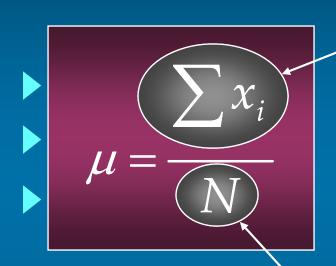
Sample Mean \bar{x}



Sum of the values of the n observations

Number of observations in the sample

Population Mean μ



Sum of the values of the *N* observations

Number of observations in the population

Sample Mean

Example: Apartment Rents

Seventy efficiency apartments
were randomly sampled in
a small college town. The
monthly rent prices for
these apartments are listed
in ascending order on the next slide.

Sample Mean

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

Sample Mean

$$\overline{x} = \frac{\sum x_i}{n} = \frac{34,356}{70} = \boxed{490.80}$$

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

- The <u>median</u> of a data set is the value in the middle when the data items are arranged in ascending order.
- Whenever a data set has extreme values, the median is the preferred measure of central location.
- The median is the measure of location most often reported for annual income and property value data.
- ► A few extremely large incomes or property values can inflate the mean.

■ For an <u>odd number</u> of observations:

12 | 14 | 18 (19) 26 | 27 | 27 | in ascending order

the median is the middle value.

■ For an <u>even number</u> of observations:

12 | 14 | 18 | 19 | 26 | 27 | 27 | 30 | in ascending order

the median is the average of the middle two values.

Median =
$$(19 + 26)/2 = (22.5)$$

Averaging the 35th and 36th data values:

Median =
$$(475 + 475)/2 = (475)$$

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

Mode

- The <u>mode</u> of a data set is the value that occurs with greatest frequency.
- The greatest frequency can occur at two or more different values.
- If the data have exactly two modes, the data are bimodal.
- If the data have more than two modes, the data are multimodal.

Mode

450 occurred most frequently (7 times) $Mode = \underbrace{450}$

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

Percentiles

- A percentile provides information about how the data are spread over the interval from the smallest value to the largest value.
- Admission test scores for colleges and universities are frequently reported in terms of percentiles.

Percentiles

The <u>pth percentile</u> of a data set is a value such that at least p percent of the items take on this value or less and at least (100 - p) percent of the items take on this value or more.

Percentiles

Arrange the data in ascending order.

Compute index i, the position of the pth percentile.

$$i = (p/100)n$$

If i is not an integer, round up. The pth percentile is the value in the ith position.

If i is an integer, the pth percentile is the average of the values in positions i and i+1.

90th Percentile

$$i = (p/100)n = (90/100)70 = 63$$

Averaging the 63rd and 64th data values:

90th Percentile =
$$(580 + 590)/2 = (585)$$

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

90th Percentile

- "At least 90%of the itemstake on a valueof 585 or less."
- \bullet 63/70 = .9 or 90%

- "At least 10%of the itemstake on a valueof 585 or more."
- | 7/70 = .1 or 10%

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

Quartiles

- Quartiles are specific percentiles.
- ► First Quartile = 25th Percentile
- ► Second Quartile = 50th Percentile = Median
- ► Third Quartile = 75th Percentile

Third Quartile

Third quartile = 75th percentile

$$i = (p/100)n = (75/100)70 = 52.5 = 53$$
Third quartile = 525

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

Measures of Variability

- It is often desirable to consider measures of variability (dispersion), as well as measures of location.
- For example, in choosing supplier A or supplier B we might consider not only the average delivery time for each, but also the variability in delivery time for each.

Measures of Variability

- ▶ q Range
- ▶ q Interquartile Range
- **Variance**
- ▶ g Standard Deviation
- ▶ q Coefficient of Variation

Range

- The <u>range</u> of a data set is the difference between the largest and smallest data values.
- It is the <u>simplest measure</u> of variability.
- It is <u>very sensitive</u> to the smallest and largest data values.

Range

Range = largest value - smallest value Range = 615 - 425 = 190

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

Interquartile Range

- The <u>interquartile range</u> of a data set is the difference between the third quartile and the first quartile.
- ▶■ It is the range for the <u>middle 50%</u> of the data.
- ▶ It overcomes the sensitivity to extreme data values.

Interquartile Range

- 3rd Quartile (*Q*3) = 525
- 1st Quartile (Q1) = 445
- Interquartile Range = Q3 Q1 = 525 445 = 80

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

Variance

The <u>variance</u> is a measure of variability that utilizes all the data.

It is based on the difference between the value of each observation (x_i) and the mean (\bar{x}) for a sample, μ for a population).

Variance

- The variance is the <u>average of the squared</u> <u>differences</u> between each data value and the mean.
- The variance is computed as follows:

$$s^2 = \frac{\sum (x_i - \overline{x})^2}{n - 1}$$

for a sample

$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$$

for a population

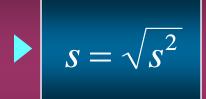
Standard Deviation

The <u>standard deviation</u> of a data set is the positive square root of the variance.

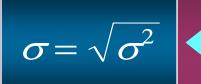
It is measured in the <u>same units</u> as the <u>data</u>, making it more easily interpreted than the variance.

Standard Deviation

The standard deviation is computed as follows:



for a sample



for a population

Coefficient of Variation

- The <u>coefficient of variation</u> indicates how large the standard deviation is in relation to the mean.
- The coefficient of variation is computed as follows:

Descriptive Statistics: Numerical Measures

Measures of Distribution Shape, Relative Location, and Detecting Outliers

Measures of Distribution Shape, Relative Location, and Detecting Outliers

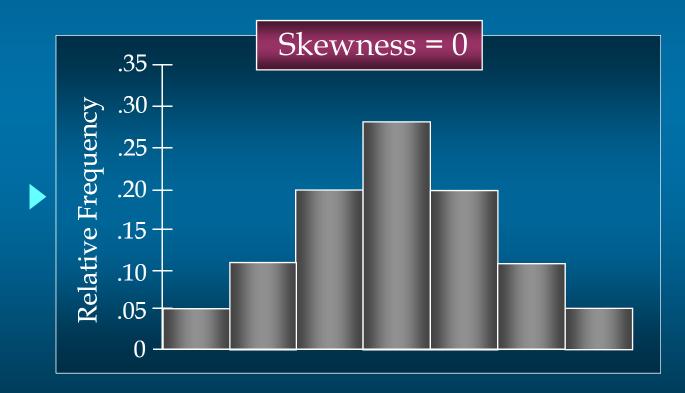
- q Distribution Shape
- g z-Scores
- q Detecting Outliers

Distribution Shape: Skewness

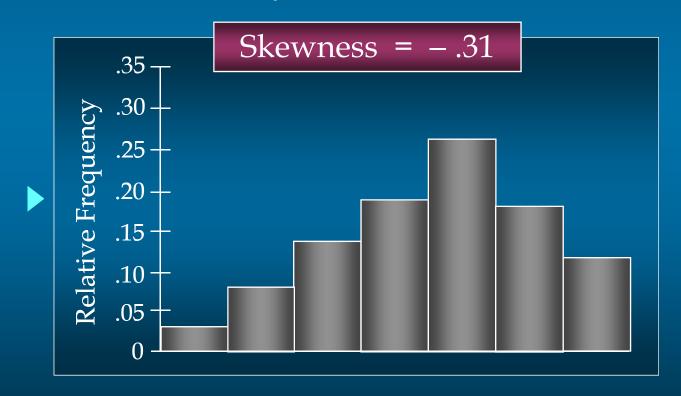
- An important measure of the shape of a distribution is called <u>skewness</u>.
- ▶ q The formula for computing skewness for a data set is somewhat complex.
- ▶ q Skewness can be easily computed using statistical software.

Distribution Shape: Skewness

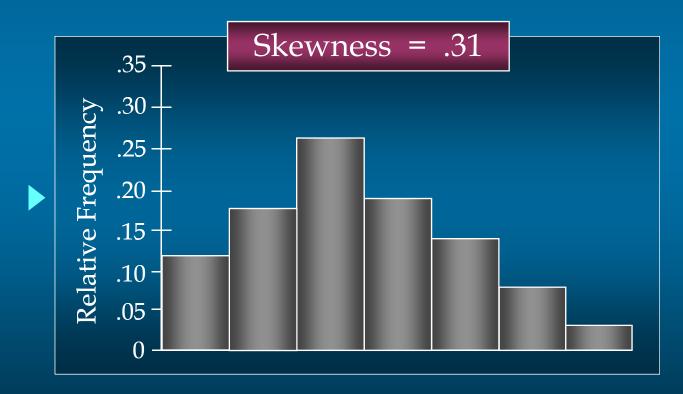
- q Symmetric (not skewed)
 - Skewness is zero.
 - Mean and median are equal.



- q Moderately Skewed Left
 - Skewness is negative.
 - Mean will usually be less than the median.

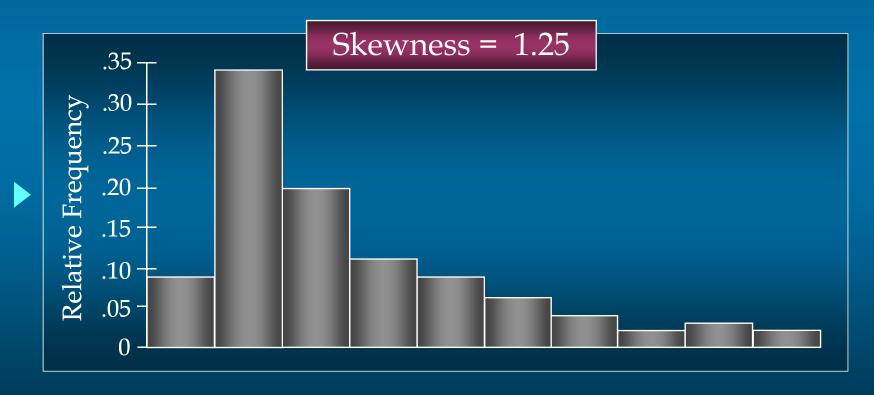


- q Moderately Skewed Right
 - Skewness is positive.
 - Mean will usually be more than the median.



q Highly Skewed Right

- Skewness is positive (often above 1.0).
- Mean will usually be more than the median.



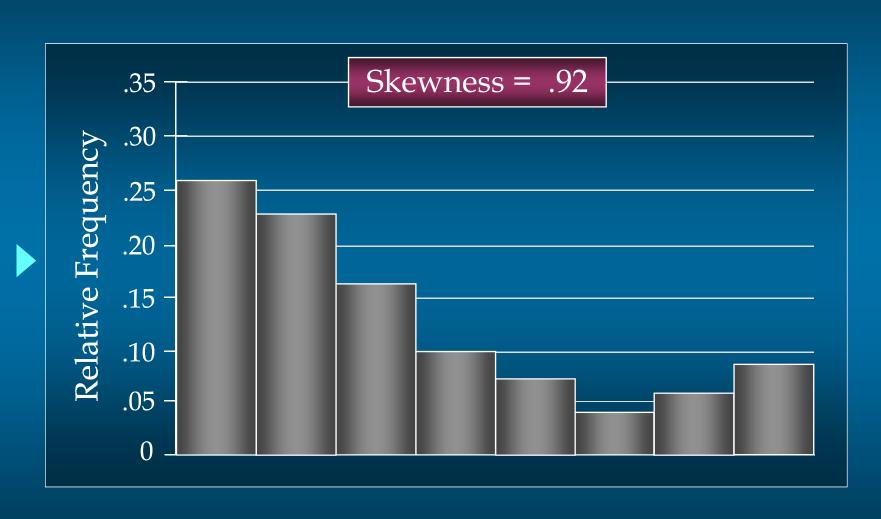
q Example: Apartment Rents

Seventy efficiency apartments were randomly sampled in a small college town. The monthly rent prices for these apartments are listed

FOR

in ascending order on the next slide.

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615



z-Scores

The <u>z-score</u> is often called the standardized value.

It denotes the number of standard deviations a data value x_i is from the mean.

$$z_i = \frac{x_i - \overline{x}}{s}$$

z-Scores

- An observation's z-score is a measure of the relative location of the observation in a data set.
- ▶■ A data value less than the sample mean will have a z-score less than zero.
- A data value greater than the sample mean will have a z-score greater than zero.
- ► A data value equal to the sample mean will have a z-score of zero.

z-Scores

q z-Score of Smallest Value (425)

$$z = \frac{x_i - \overline{x}}{s} = \frac{425 - 490.80}{54.74} = (-1.20)$$

Standardized Values for Apartment Rents

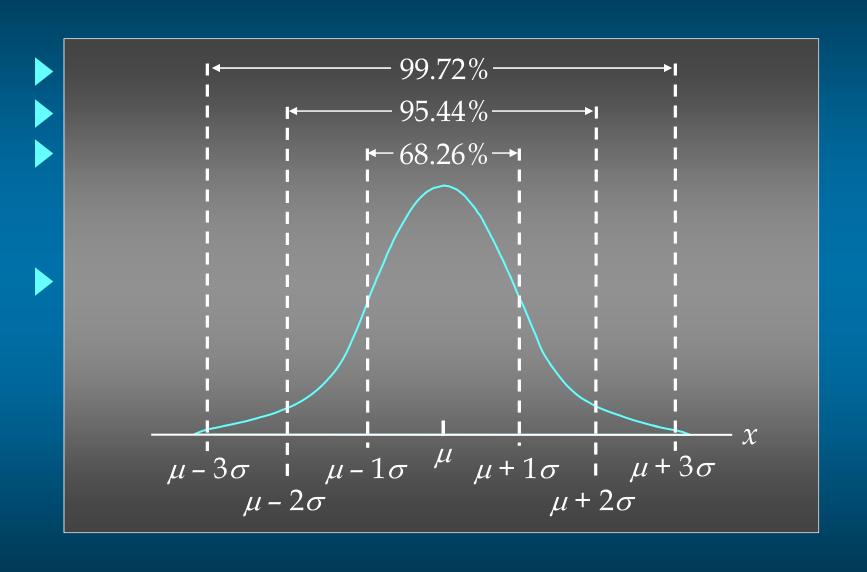
-1.20	-1.11	-1.11	-1.02	-1.02	-1.02	-1.02	-1.02	-0.93	-0.93
-0.93	-0.93	-0.93	-0.84	-0.84	-0.84	-0.84	-0.84	-0.75	-0.75
-0.75	-0.75	-0.75	-0.75	-0.75	-0.56	-0.56	-0.56	-0.47	-0.47
-0.47	-0.38	-0.38	-0.34	-0.29	-0.29	-0.29	-0.20	-0.20	-0.20
-0.20	-0.11	-0.01	-0.01	-0.01	0.17	0.17	0.17	0.17	0.35
0.35	0.44	0.62	0.62	0.62	0.81	1.06	1.08	1.45	1.45
1.54	1.54	1.63	1.81	1.99	1.99	1.99	1.99	2.27	2.27

Empirical Rule

For data having a bell-shaped distribution:

- 68.26% of the values of a normal random variable are within +/-1 standard deviation of its mean.
- 95.44% of the values of a normal random variable are within +/- 2 standard deviations of its mean.
- 99.72% of the values of a normal random variable are within +/- 3 standard deviations of its mean.

Empirical Rule



Detecting Outliers

- An <u>outlier</u> is an unusually small or unusually large value in a data set.
- ► A data value with a z-score less than -3 or greater than +3 might be considered an outlier.
- ▶■ It might be:
 - an incorrectly recorded data value
 - a data value that was incorrectly included in the data set
 - a correctly recorded data value that belongs in the data set

Detecting Outliers

- ► The most extreme z-scores are -1.20 and 2.27
- Using $|z| \ge 3$ as the criterion for an outlier, there are no outliers in this data set.

Standardized Values for Apartment Rents

-1.20	-1.11	-1.11	-1.02	-1.02	-1.02	-1.02	-1.02	-0.93	-0.93
-0.93	-0.93	-0.93	-0.84	-0.84	-0.84	-0.84	-0.84	-0.75	-0.75
-0.75	-0.75	-0.75	-0.75	-0.75	-0.56	-0.56	-0.56	-0.47	-0.47
-0.47	-0.38	-0.38	-0.34	-0.29	-0.29	-0.29	-0.20	-0.20	-0.20
-0.20	-0.11	-0.01	-0.01	-0.01	0.17	0.17	0.17	0.17	0.35
0.35	0.44	0.62	0.62	0.62	0.81	1.06	1.08	1.45	1.45
1.54	1.54	1.63	1.81	1.99	1.99	1.99	1.99	2.27	2.27