Error Analysis in Pixel Duplicated Images of Diabetic Retinopathy

Introduction

- In early diabetic retinopathy, clinician is interested in the extraction and analysis of
 - hemmorhages
 - optic nerve constriction
 - aneurisms
 - other stresses on blood vessels
- Pixel duplication is an image enlargement method for image enhancement and detail retention
- Pixel duplication followed by filtering is expected to retain more information than filtering alone
- Pixel duplication can be thought of reverse sub-pixel analysis for superresolution images

Motivation and Objectives

- Many interpolation methods have been developed to retain information in the images during and after image processing operations, such as filtering
- Pixel duplication: memory intensive, but
 - complementary method to pixel interpolation
 - allows working with integers without the added complexity of working with floating point operations
 - more feasible for real-time classic hardware implementations (FPGA)
- Motivation: investigate error introduced by pixel duplication to support this image enlargement method as a complementary technique to pixel interpolation
- Objectives:
 - use pixel duplication, smoothing, and normalized correlation methods to detect aneurisms in diabetic retinopathy
 - Analyze error introduced by the method to show its advantages for detecting small structures

- Effectiveness and error analysis of detecting microaneurysms in early diabetic retinopathy through
 - Pixel duplication
 - Filtering
 - Template matching through normalized cross correlation
 - Minimizing false positives detection when eliminating (0) false negatives

- Retinal Image Processing:
 - Pixel Duplication

Retinal Image Processing:

• Pixel Duplication – Modified Reverse Gaussian Pyramid

- Retinal Image Processing:
 - Mean Filtering (smoothing)

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

kernels

-	T.	7-	•
4	X	-	Ł
-	,	-	,

	1/25	1/25	1/25	1/25	1/25
22222222222	1/25	1/25	1/25	1/25	1/25
1111111111111	1/25	1/25	1/25	1/25	1/25
	1/25	1/25	1/25	1/25	1/25
	1/25	1/25	1/25	1/25	1/25

1	5	X		
	٦.	4 1	۰.	J

1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/49	1/49	1/49	1/49	1/49	1/49	1/49

How much information is retained during spatial low pass filtering?

1			

Original image	Retaine Informatio	ned Pixel ion (weight)								
mean filter	Horizontal, Vertical	Overall								
(<mark>3x1, 1x3)</mark> (3x3)	1/3	1/9								
(5x1, 1x5) (5x5)	1/5	1/25								
(7x1, 1x7) (7x7)	1/7	1/49								

Graphical representation of smoothing:

			1/25	1/25	1/25	1/25	1/25	1/49	1/49	1/49	1/49	1/49	1/49	1/49
			1/25	1/25	1/25	1/25	1/25	1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/9	1/9	1/9	1/25	1/25	1/25	1/25	1/25	1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/9	1/9	1/9	1/25	1/25	1/25	1/25	1/25	1/49	1/49	1/49	1/49	1/49	1/49	1/49
1/9	1/9	1/9	1/25	1/25	1/25	1/25	1/25	1/49	1/49	1/49	1/49	1/49	1/49	1/49
mm	un nu	<u>annanna</u> (mmm	aaaaaa	www.ww		2	annan				wwww	ana ana

3X3

5X5

7X7

1/49 1/49 1/49 1/49 1/49 1/49 1/49

How much information is retained during spatial low pass filtering?

															2x2 p in	oix. d nage	up.	R	etaiı	ned H (Pixel weig	el Information ight)				
															mean filter			Ho	Horizontal, Vertical			Overall		all		
												(3x1, 1x3) 1/3, 2/3 (3x3)				(3x1, 1x3) (3x3)				1/9, 2/9, 4/9						
]							(5 (5	(5x1, 1x5) (5x5)			1/5, 2/5				1/25, 2/25, 4/25		'25, ;		
					2/9		4/9							(7 (7	(7x1, 1x7) (7x7)				1/7,	2/7		1/4	19, 2/ 4/49	′49,)		
								1/9										1/40	1/49	1/40	1/40	1/40	1/40	1/40		
																		1/49	1/49	1/49	1/49	1/49	1/49	1/49		
													1/25	1/25	1/25	1/25	1/25	1/49	1/49	1/49	1/49	1/49	1/49	1/49		
													1/25	1/25	1/25	1/25	1/25	1/49	1/49	1/49	1/49	1/49	1/49	1/49		
									1,	/9	1/9	1/9	1/25	1/25	1/25	1/25	1/25	1/49	1/49	1/49	1/49	1/49	1/49	1/49		
									1	/9	1/9	1/9	1/25	1/25	1/25	1/25	1/25	1/49	1/49	1/49	1/49	1/49	1/49	1/49		
									1	/9	1/9	1/9	1/25	1/25	1/25	1/25	1/25	1/49	1/49	1/49	1/49	9 1/49 1/49 1/49				
282 585												7X7														

3X3

5X5

images of diabetic retinopathy," SPIE Optics and Photonics, San Diego, CA, August 1-5, 2010.

• Retinal Image Processing:

Template matching

microaneurysm dot model (template)

sample microaneurysm profile from a raw image file

- Retinal Image Processing:
 - Normalized Cross Correlation

- NCC was applied to
 - Original, 2x2 pixel duplicated, and 3x3 pixel duplicated images (no filtering)
 - 3x3 mean filtered: original, 2x2 pixel duplicated, and 3x3 pixel duplicated images
 - 5x5 mean filtered: original, 2x2 pixel duplicated, and 3x3 pixel duplicated images
 - 7x7 mean filtered: original, 2x2 pixel duplicated, and 3x3 pixel duplicated images

Results

Detection of microaneurysms through NCC

Results:

Detection of small structures

- Specificity= True negative / (true negative + false positive)
- Sensitivity =TP / (TP + FN);

Condition FN = 0; sensitivity = 1

• Sensitivity = 1 (do not want to miss any microaneurysms)

So goal → optimize parameters

- For sensitivity = 1
- To minimize false positive rate

 Table 1. False Lesion Detection Results with Various Image Processing Operations

 a. Minimum number of false positives is reported per location and neighborhood. Multiple detections within 1-pixel neighborhoods are omitted from this count

Results

Summary

- Effects of pixel duplication in reducing false positive detection of aneurysms with some exceptions are demonstrated.
- The exceptions could be attributed to to idealized conditions.
- More tests are underway to validate the preliminary results
- Microaneurysms were chosen as a structure of interest in this case. NCC is not the best technique to identify microaneurysms, but was used here to demonstrate the proposed technique.