Exercises on Complex Numbers MATH 5333.001 Summer 2000

Let $C = \{ a + bi : a \text{ and } b \text{ are real numbers} \}$, where $i^2 = -1$, represent the complex numbers. It is claimed in the text that the complex numbers form a field. The operations on complex numbers are addition ((a + bi) + (c + di) = (a+b) + (c+d)i) and multiplication $((a + bi)^*(c + di) = (ac - bd) + (ad+bc)i)$.

- 1. Let $c_1 = 2 + 1I$ and $c_2 = 3 2i$.
 - a) Find $c_1 + c_2$, $c_1 c_2$, and $c_1 * c_2$.
 - b) Show that 0 = 0 + 0 *i* is the additive identity for the field of complex numbers and that 1=1 + 0 *i* is the multiplicative identity for the field of complex numbers.
 - c) Find a complex number c such that $c * c_1 = 1$. The complex number c would be the multiplicative inverse of c_1 .
 - d) Find a general formula for the multiplicative inverse of a + bi.
- 2. For a complex number a + bi, write $\overline{a + bi} = a bi$, or the conjugate of the complex number a + bi.
 - a) Find the complex conjugates of the numbers c_1 and c_2 from problem 1.
 - b) Find the complex conjugate of the multiplicative inverse of c₁, and find the multiplicative inverse of the complex conjugate of c₁ you found in (a). How are they related?
 - c) Prove any conjecture you have based on (b).
 - d) Find a + b*i*, that is the conjugate of the conjugate, for c_1 and c_2 . What happens in general? Prove it.
- 3. Let $||a + bi|| = \sqrt{a^2 + b^2}$ be the absolute value of a complex number.
 - a) Find the absolute values of the complex numbers c_1 and c_2 .
 - b) Find the absolute value of $\overline{c_1}$. How does it compare to the absolute value of c_1 ?
 - c) Prove any conjecture you have based on (b).