Exercises on Complex Numbers
 MATH 5333.001

 Summer 2000

 Summer 2000}

Let $\mathbf{C}=\{\mathrm{a}+\mathrm{b} i: \mathrm{a}$ and b are real numbers $\}$, where $i^{2}=-1$, represent the complex numbers. It is claimed in the text that the complex numbers form a field. The operations on complex numbers are addition $((\mathrm{a}+\mathrm{b} i)+(\mathrm{c}+\mathrm{d} i)=(\mathrm{a}+\mathrm{b})+(\mathrm{c}+\mathrm{d}) i)$ and multiplication $((\mathrm{a}+\mathrm{b} i) *(\mathrm{c}+\mathrm{d} i)=(\mathrm{ac}-\mathrm{bd})+(\mathrm{ad}+\mathrm{bc}) i)$.

1. Let $\mathrm{c}_{1}=2+1 I$ and $\mathrm{c}_{2}=3-2 i$.
a) Find $\mathrm{c}_{1}+\mathrm{c}_{2}, \mathrm{c}_{1}-\mathrm{c}_{2}$, and $\mathrm{c}_{1} * \mathrm{c}_{2}$.
b) Show that $0=0+0 i$ is the additive identity for the field of complex numbers and that $1=1+0 i$ is the multiplicative identity for the field of complex numbers.
c) Find a complex number c such that $\mathrm{c} * \mathrm{c}_{1}=1$. The complex number c would be the multiplicative inverse of c_{1}.
d) Find a general formula for the multiplicative inverse of $a+b i$.
2. For a complex number $\mathrm{a}+\mathrm{b} i$, write $\overline{\mathrm{a}+\mathrm{bi}}=\mathrm{a}-\mathrm{b} i$, or the conjugate of the complex number $\mathrm{a}+\mathrm{b} i$.
a) Find the complex conjugates of the numbers c_{1} and c_{2} from problem 1.
b) Find the complex conjugate of the multiplicative inverse of c_{1}, and find the multiplicative inverse of the complex conjugate of c_{1} you found in (a). How are they related?
c) Prove any conjecture you have based on (b).
d) Find $\overline{\mathrm{a}+\mathrm{bi} i}$, that is the conjugate of the conjugate, for c_{1} and c_{2}. What happens in general? Prove it.
3. Let $\|\mathrm{a}+\mathrm{bi}\|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$ be the absolute value of a complex number.
a) Find the absolute values of the complex numbers c_{1} and c_{2}.
b) Find the absolute value of $\overline{c_{1}}$. How does it compare to the absolute value of c_{1} ?
c) Prove any conjecture you have based on (b).
