A wire carries a current northward. Gravity points down. What \(B \) could levitate the wire?

(Ans: West)

\[\mathbf{F} = \text{up} \]

\[\mathbf{T} = \text{north} \]

\[\text{West} = \mathbf{F} \]

E-Field Only \(\Rightarrow \)

\[\mathbf{F}_E = q \mathbf{E} \]

Particle accel in dir of \(\mathbf{F}_E \)

Force in the direction of motion does work.

\[\text{Energy} = \text{Charge} \times \text{Voltage} \]

\[\frac{1}{2} m v^2 = q V = q E l \]

This is a particle accelerator.
B-Field Only

\[\vec{F}_B = q \vec{v} \times \vec{B} \sin \theta \]

- If \(\vec{v} \) along \(\vec{B} \), \(\theta = 0 \) \(\Rightarrow \vec{F}_B = 0 \)
- If \(\vec{v} \) perpendicular \(\vec{B} \), \(\theta = 90^\circ \) \(\Rightarrow \vec{F}_B = q \vec{v} \vec{B} \)

\[\text{Force} = m \cdot \text{accel} \]

\[q \vec{v} \vec{B} = m \vec{v}^2 / r \]

\[r = \frac{m \vec{v}}{q \vec{B}} \]

Mass Spectrometer

- \(m \) different for each particle
- \(v, q, \vec{B} \) the same

Detector
E and B simultaneously

\[E \text{ is uniform } \rightarrow F_E = \text{ uniform} \]
\[B \text{ is uniform } \rightarrow F_B = \text{ uniform?} \]
\[\frac{\vec{v}}{v} = \text{ constant} \]

\[\sum F = 0 \quad F_E = F_B \]

\[qE = qvB \]
\[v = \frac{E}{B} \]

What if the particle is going too slow?
\[F_B \text{ is weaker, } F_E \text{ wins} \]
Particle is deflected to the right.
Mass Spec analysis \(v = \frac{E}{B} \)

\[r = \frac{mv}{eB} \]

Motional EMF

\[\rightarrow \]

When the bar is moving across \(B \):
- Electrons feel \(F_e \). What dir.?
 - \(+ \) would feel \(F_e = \text{(left)} \)
 - \(- \) feels \(F_e = \text{(right)} \)
- Built-up charge forms a capacitor
- There is \(E \) in the metal now.
- Balance when \(F_e = F_B \)
 \[qE = qvBR \]
 \[E = vR \]
 \[V = EL = vBL \]

Voltage \(\rightarrow \) velocity
Move wire in B Field \rightarrow EMF

Hold wire and move magnet \rightarrow EMF

What makes the stationary charge move? Fluctuating B makes E