Exam 1 Avg: 59.79%

Next Topic: Magnetism

Read Chap 29, 30

#16

\[E = \frac{A}{R} + V_{\text{meter}} \]

No Current!

#33

\[R_{\text{eq}} = 40 \Omega \]

\[I = \frac{120 \text{ V}}{40 \Omega} = 3 \text{ A} \]
\[I_1 + I_3 = I_2 \]

Left Loop:
\[22 - 4I_1 - 2I_2 = 0 \]

Right Loop:
\[24 - 7I_3 - 2I_2 = 0 \]

Outer Loop:
\[22 - 24 + 7I_3 - 4I_1 = 0 \]

\[\begin{align*}
22 - 4I_1 - 2I_2 - 2I_3 &= 0 \\
24 - 7I_3 - 2I_1 - 2I_3 &= 0 \\
(22 - 3) - 2I_3 + 3 - 9I_3 &= 0
\end{align*} \]

\[-50 + 25I_3 = 0 \quad I_3 = 2A \]

\[22 - 6I_1 - 2I_2 = 0 \]

\[18 - 6I_1 = 0 \quad I_1 = 3A \]

\[I_2 = 2 + 3 = 5A \]
#27 \(\Phi_E = \frac{q}{\varepsilon_0} = 4\pi \cdot k \cdot q = 1.8 \times 10^{-8} \text{ V} \cdot \text{m} \)

#28

\[\varepsilon = \frac{F}{A} = \frac{q\varepsilon_0}{4\pi r^2} \]

\[\varepsilon = \frac{4\pi k \cdot q \cdot \varepsilon_0}{A} \]

\[= \frac{k \cdot q \cdot \varepsilon_0}{r^2} \]

\[= \frac{9 \times 10^9 \frac{\text{Nm}^2}{\text{C}^2} \cdot 3 \times 10^{-9} \text{ C}}{(0.06 \text{ m})^2} \]

#18

\[F_E = m \cdot 0.0136 \text{ kg} \quad q = 0.69 \mu \text{C} \]

\[F_E = F_g \]

\[12 \v E = m \cdot g \]

\[E = 1.93 \times 10^5 \text{ N/C} \]

Charge of a sheet: \(E = \frac{\sigma}{2 \varepsilon_0} = 2\pi \cdot k \cdot \sigma \)

\[\sigma = 3.4 \times 10^{-6} \text{ C/m}^2 \]

Insulator Sheet: \(+ \quad + \quad + \quad + \quad \)

Metal Surface: \(+ \quad + \quad + \quad + \quad \)

\[E = \sigma \varepsilon_0 \]

\[E = \sigma \varepsilon_0 \]
Magnets

Magnetic Field - Flow of Mag Flux.
 Mag Flux circulates.
 Mag Field lines form loops.

Effects of magnets:
 • Attract / Repel
 • Can magnetize materials
 • Compass
 • Motors
 • Generators

Magnetic Force
\[F = q \mathbf{v} \times \mathbf{B} \]

\[|F| = |q| |\mathbf{v}| |\mathbf{B}| \sin \theta \]

\[\mathbf{v} \text{ and } \mathbf{B} \text{ can't be parallel} \]

\[= q \mathbf{v} \perp \mathbf{B} = q \mathbf{v} \mathbf{B} \perp \]

\[\mathbf{B} \rightarrow \nabla \mathbf{B} \quad \theta \rightarrow \mathbf{v} \]

\[\mathbf{F} = q \mathbf{v} \mathbf{B} \quad \mathbf{F} = \mathbf{0} \]

\[\mathbf{F}_B \text{ is } \perp \text{ to both } \mathbf{v} \text{ and } \mathbf{B} \]
Specifying Directions

Terms: $+x$, $-x$, $+y$, $-y$, $+z$, $-z$

Paper Space: Front (F), Back (B), Right (R), Left (L), Top (T), Bottom (B), Out (O), In (I), Up (U), Down (D)

Relative: E, W, N, S, U, D

Model Space: E, W, N, S, U, D