Exam 2 Th 10/29

AC Voltage pushes AC Current.

\[V_{\text{rms}} = 2I_{\text{rms}} \]

\[L \text{ Impedance} \]

Series Impedance \(Z = \sqrt{R^2 + (X_L - X_C)^2} \)

\[X_L = 2\pi fL \quad \text{Inductor blocks high-f} \]

\[X_C = \frac{1}{2\pi fC} \quad \text{Capacitor blocks low-f} \]

What is \(f_0 \)? \(X_L = X_C \)

\[2\pi f L = \frac{1}{2\pi f C} \]

\[\left(2\pi f\right)^2 = \frac{1}{LC} \quad \Rightarrow \quad f_0 = \frac{1}{2\pi \sqrt{LC}} \]
Ex: \(L = 2 \ \text{nH} \)

\[f_1 = \frac{1}{2\pi \sqrt{LC}} = 93.7 \ \text{MHz} \]

\[f_2 = \frac{1}{2\pi \sqrt{LC}} = 106.5 \ \text{MHz} \]

\[2\pi f_2 = \frac{1}{2\pi f_1} \]

\[C = \frac{1}{(2\pi f_1)^2 L} \]

\[C_1 = 1.44 \times 10^{-9} \ \text{F} = 1.44 \ \text{nF} \]

\[C_2 = 1.12 \times 10^{-9} \ \text{F} = 1.12 \ \text{nF} \]

\[L = \frac{\mu_0 N^2 A}{2} \]

\[C = \frac{3A}{a} \]
Filters

Low-F High-F

Inductor Passes Blocks

Capacitor Blocks Passes

Noisy + \[\overset{L}{\rightarrow} \] \[R \] Device

Some const V.
L Passes DC \(I \),
blocks AC.

Some high-F \(V_{rms} \).

DC Current

Noisy + \[\overset{AC}{\rightarrow} \] \[R \]
\(B = 22 \text{ mT} \)

Energy = 730 eV = energy of electron after 730V

Electrons \(E = ? \) for velocity selector

\[F_E = F_B \]

\[\Delta PE = \Delta KE \]

\[qE = q\nu B \]

\[q\Delta V = \frac{1}{2}m\nu^2 \]

\[(1.6 \times 10^{-19} \text{ C})(730 \text{ V}) = \frac{1}{2} m_e \nu^2 \]

Applied voltage accelerates electron to a velocity. Passes thru velocity selector if \(E \) is right.

\[\text{ebeam} \]

\[\theta \]

\[\Delta V \]

\[\theta \]

\[\text{up} \]

\[\text{down} \]

\[F_{ek} = \text{(down)} \]

\[\frac{F_{ek}}{E} = \text{(up)} \]
As the magnet arrives:
- B was zero.
- B will point \underline{Left}.
- Coil opposes change.
- Induced B points \underline{right}.
- Bind caused by I going rightward thru R.

As the magnet leaves:
- B was pointing \underline{Left}.
- B is decreasing.
- Coil opposes change.
- Bind points \underline{Left}.
- Caused by I going left thru R.