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Introduction.

First, some historical background. Up until 1994 the Department
of Mathematics at Texas A&M University relied on a student
evaluation of instructor form that was heavily weighted towards
verbal responses. Although there were questions such as “On
a scale of one to five, rate your instructor as to. . .”, much
more attention was paid to the verbal comments when faculty
teaching was being evaluated, in particularly for promotion or
tenure decisions. In any case, there was no tabulation of the
results and certainly no attempt made to reduce the output from
the questionnaires to any quantitative value.

For a two year trial period a decision was made to utilize ques-
tionnaires that were electronically scanned and the output easily
condensed to a few numbers that were (hopefully) indicative of
the teaching performance of the instructor, albeit from the stu-
dent’s point of view.

From an administrative viewpoint, there is an obvious lure
to measuring “teaching effectiveness” by reduction to a few, or
as actually seems to happen, a single number. Most often this
number is the average of all the individual components. This
is especially true when large numbers are involved. Reading
10,000 student questionnaires each semester for 115 faculty and
putting this into any kind of context is virtually impossible. Even
for the relatively few cases where in-depth information must be
acquired, it is often difficult for evaluators to use solely written
comments and yet put them in a comparative perspective. Thus,
“Jones had a 3.94 mean on her student evaluations, and since this
is 0.2 above the average for the Department, we conclude she is
an above average instructor as judged by these questionnaires”
is a statement that appears to be increasingly common. Since
few departments have managed to similarly quantify other pos-
sible measures of evaluation, the single number stands out and
eventually becomesthemeasure of teaching effectiveness.

The purpose of this article is to examine some of the is-
sues surrounding this method of analysing the data; to come to
some understandingof the informationobtained and to determine
whether the distillation down to a few numbers is a valid tool for
the effective evaluation of teaching. In short, we want to see if
what seems to be an increasingly common system of evaluation
contains sufficient information of reliable nature as to be useful
as a means of determining raises, promotions and tenure.

The Evaluation Form Used.

The main part of the evaluation form consisted of ten questions
with choices ranging from 1 (low) to 5 (high). There was also
a space for comments. This format is much more in line with
that used by other departments in the University, and indeed the
first five questions on the form were ones suggested jointly by
the Student and Faculty Senates. The other five questions were
added by a department committee and were meant to complement

the other five. These questions are shown in Figure 1.

Figure 1. The Questions used

1. I would take another course from this professor.

2. The exams/projects were presented and graded fairly.

3. The amount of work and/or reading was reasonable for the
credit hours received in the course.

4. I believe this instructor was an effective teacher.

5. Help was readily available for questions and/or homework
outside of class.

6. The instructor seemed to be well-prepared for class.

7. The instructor had control of the class’ direction.

8. The instructor genuinely tried to help the students learn
the material and showed concern.

9. The instructor covered all the material and paced it evenly.

10. Compared with all the instructors I have had in college,
this instructor was one of the best.

There was some awareness of possible overlap, for example,
questions one and ten, but that was not considered critical. Typ-
ically, these evaluations were filled out in the last week of class,
but prior to the final examination The questionnaires were pro-
cessed by a central measurement and testing service. Raw output
consisted ofn words, each of length ten and consisting of an al-
phabet of the characters 1, 2, 3, 4 and 5. Heren denotes the
total number of responses. Published output was the averages
for each section of the responses to each of the ten questions,
plus the average of these ten numbers, the “overall mean.” Note
that some questions pertained to the instructor while others to
the course content. These are frequently linked, but in the case
of a department that carries a large service load with multiple
sections of a given course the instructor tends to have very little
input into the course syllabus. Also available was the the answer
to an eleventh question, the student’s expected grade (this was
not a standard feature of these forms but was added by the depart-
ment), the total number enrolled in the section,N , the number
of students who “Q-dropped”, and, from a separate source, the
grade distribution for that section. Of course,n ≤ N and the
response raten/N varied markedly. The mean response rate
over all sections was 67.5% with a standard deviation of 16.3%.

Background and types of Course.

At Texas A&M we teach very little precalculus mathematics or
material normally considered to be part of the high school cur-
riculum. These courses account for about 6% of our enrollment.
There is a core curriculum requirement, typically satisfied by a
course in finite mathematics (M166) and one in “single semester
calculus” (M131) and usually taken by those students whose ma-
jor does not require a specific mathematics sequence. There is
also a version of these, at much the same level of sophistica-
tion and content, but tailored towards the needs of those students
enrolled in the College of Business (M141, M142). Average
total enrollment in these four courses is 5,200 students in the
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fall semester and 4,500 in the spring. In these courses there is
no implied sequencing and students frequently take them in any
order. Although they have a freshmen designation, and from a
mathematical standpoint that is correct, many students postpone
these classes until later in their undergraduate program. The av-
erage class size is 100. For the purposes of this study we will
designate the above classes as constituting Group A.

There is a three semester calculus sequence for Mathematics
and Science majors and a parallel, virtually identical in content,
one for engineering students. Average enrollment in these se-
quences is 3,100 students in the fall and 2,600 in the spring. Class
size varies from about 30 in the mathematics/science sequence to
a little little under a hundred students in the engineering sequence
although the latter has recitation sections of average class size
30. We will designate these courses as Group B.

Almost all of the students in Group B take a fourth semester
class in differential equations and most of them take at least one
further course in mathematics at the junior level. The differential
equations course has an average enrollment of 700 per semester
and the other junior level courses have another 400. Class size
is between 40 and 50 students. We will refer to these courses as
being in Group C.

We also teach a variety of courses at the junior and senior
level primarily designed for mathematics majors; these will be
denoted by group D.

The multi-section courses we teach have a varying degrees
and methods of coordination. In an experiment started three
years ago the Department used common exams in the first two
semesters of engineering calculus. In fact the actual questions
posed are not known to the instructors of the class prior to the
examination.

Of course, the Department teaches a wide variety of classes
and the results from some of these will appear in the analysis
below. However, the sheer numbers afforded by the enrollments
in Groups A, B and C allow for an analysis of the data with
minimum subjectivity. The data for this paper was accumulated
over the four semesters the form was in use.

The Information Content of the Data

The first thing we might want to inquire after hearing of Professor
Jones’ “above average” student questionnaires is the class taught,
for as the table below shows not all levels of student tend to work
on the same scale.

Table 1. Mean Evaluation Norm
for Professorial Rank Faculty

Course Mean
Type Evaluation

Group A 3.35
Group B 3.81
Group C 3.91
Group D 4.27
Graduate 4.47

This is certainly not unexpected since students who take a class
as part of a mandated general education requirement might not
have the same notions as a senior mathematics major or a graduate
student. There are some flaws in interpreting the vast differences

in mean scores in this table as being totally due to differences
in the students. Both the undergraduate and graduate program
committees succesfully lobby for certain instructors to teach the
courses for our majors so that the professors involved do not
constitute a random sample.

An intelligent use of data would surely take this into account.
Would it also need to allow for the following?

1. “On semester” classes tend to have better students and higher
grades than those in the “off semester.” For example, science
and engineering students are scheduled to take first semester
calculus during their first fall semester, those who are consid-
ered not sufficiently prepared delay it to the spring and join
those who are retaking the course from the fall.

2. The time of day the class was taken. For example, 8am
and late afternoon classes fill slower and those during the
mid-morning periods fill the quickest. Does that suggest a
different type of student in terms of how he or she evalu-
ates is forced eventually to take a less popular time period?
The average grade point ratio given out in 8am sections is
consistently lower than other time periods, especially when
compared to mid-morning sections.

3. The percentage of students responding to the survey. As
noted earlier, this varies widely between sections of the
course, and as we will see later, there is evidence that the
demographics of those responding to the survey is not repre-
sentative of the sample. How should we compensate for this
effect, if at all?

4. The percentage of Q-drops varies significantly between sec-
tions and this is true at all levels of course. For the Department
the mean Q-drop rate is 8.34% with a standard deviation of
3.84%.

One has to interpret a Q-drop as registering some dissatisfac-
tion although it is difficult to assess the impact of this on the
evaluation since these students did not participate in the pro-
cess. Did instructor A who received a mean rating of 4.3 but
had a 20% of his students Q-drop achieve a better ”customer
satisfaction” norm then instructor B who had no Q-drops but
a mean rating of 3.9? Professor A’s mean rating puts him
into the well above category, while B’s places her at slightly
below the department average. If you make the assumption
that those students who dropped would have given out a 2.0
then this would adjust the mean rating of instructor A to 3.84.
Is this value of 2.0 the correct one to use?

Would you expect a correlation between the Q-drop rates and
the mean evaluation? On the one hand, one might expect that
sections with a high Q-drop rate would have higher evaluation
on average since some of those students who were dissatisfied
were not part of the survey. One could alternatively argue
that popular instructors would automatically have a lower Q-
drop rate. In fact there is some evidence that the latter factor
is the slightly more dominant one. For instructors whose
evaluation was in the bottom one third of the range there was
no evidence of a trend in either direction, at least as far as the
gross data was concerned, the correlation index being -0.02.
For the instructors who were evaluated as being in the middle
third the correlation was -0.15 and for those in the upper third
the correlation was -0.22.
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A fundamental question is whether the students are answering
the questions asked, or are the responses to individual questions
coloured by their overall impression of the instructor, or the
course, and if this the case, how strongly.

In order to quantify this we used two measures.

Each individual questionnaire provides a 10 digit word,x =
x1, x2, . . . , x10 . The total lexigraphical distance between
two words x and y is d(x, y) =

∑10
1 |xi − yi| . Perfect

correlation for a given student’s responses would have all
characters in the word constant. Since eachxk lies between
1 and 5, completely uncorrelated responses based on random
input would have a average distance of 2 per character or 20
per word.

For each section the average scores on each question are
tabulated, giving numbers between 1.0 and 5.0. The set of
numbers corresponding to questionsx and y are compared
by the usual correlation formula for the correlation index for
two pairs of quantities(xk, yk) ,

r =
∑

k(xk − x̄)(yk − ȳ)
√∑

k(xk − x̄)2
√∑

k(yk − ȳ)2

Of course these measures are related but they do offer differ-
ent ways to look at the situation. There are other norms we
could have used; in particular, we could have worked with a
correlation index based on thè1 rather than thè 2 norm.
This would minimize the effect of outliers.

Looking at the responses, either as the raw data from each eval-
uation within a given section or as the averages for each section,
one is immediately struck by the high degree of correlation to the
answers to each question.

For the questionnaires in group A the distance between words
and their mean values was 0.57, meaning that it would require
on average less than 6 changes by a single digit to make the
response a constant one. In fact, 12.5% of all questionnaires
were identically constant and more than a third differed by only
three digits from a constant. This degree of uniformity actually
increased with the sophistication of the course. For group C 15%
of the students responded with a constant response and the mean
distance from a constant response was 0.49.

The correlation between the various questions for the averaged
responses from each section is shown in the tables below.

Table 2. Correlation Matrix for Group A?

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Q1 1.00 0.85 0.81 0.97 0.85 0.74 0.73 0.91 0.83 0.98
Q2 1.00 0.85 0.80 0.76 0.64 0.68 0.85 0.80 0.85
Q3 1.00 0.75 0.75 0.61 0.58 0.80 0.86 0.78
Q4 1.00 0.85 0.83 0.79 0.90 0.83 0.98
Q5 1.00 0.79 0.68 0.92 0.79 0.84
Q6 1.00 0.80 0.79 0.76 0.78
Q7 1.00 0.67 0.68 0.76
Q8 1.00 0.83 0.91
Q9 1.00 0.83
Q10 1.00

? Number of sections correlated = 216 (12,649 students).
Average constancy of response = 0.578

Table 3. Correlation Matrix for Group B?

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Q1 1.0 0.68 0.74 0.97 0.81 0.83 0.80 0.92 0.83 0.98
Q2 1.0 0.71 0.67 0.66 0.61 0.51 0.69 0.51 0.68
Q3 1.0 0.68 0.63 0.55 0.46 0.71 0.66 0.73
Q4 1.0 0.82 0.89 0.83 0.90 0.83 0.97
Q5 1.0 0.76 0.63 0.84 0.70 0.83
Q6 1.0 0.87 0.76 0.75 0.83
Q7 1.0 0.70 0.69 0.78
Q8 1.0 0.78 0.93
Q9 1.0 0.83
Q10 1.00

? Number of sections correlated = 176 (7,301 students).
Average constancy of response was 0.551.

Table 4. Correlation Matrix for Group C?

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Q1 1.00 0.77 0.68 0.95 0.64 0.67 0.67 0.84 0.64 0.97
Q2 1.00 0.62 0.72 0.55 0.54 0.57 0.67 0.62 0.77
Q3 1.00 0.61 0.42 0.37 0.50 0.56 0.52 0.63
Q4 1.00 0.65 0.80 0.79 0.87 0.64 0.96
Q5 1.00 0.66 0.57 0.74 0.53 0.69
Q6 1.00 0.78 0.68 0.63 0.75
Q7 1.00 0.73 0.57 0.75
Q8 1.00 0.65 0.86
Q9 1.00 0.68
Q10 1.00

? Number of sections responding was 95 (2,878 students).
Average constancy of response was 0.491.

Table 5. Correlation Matrix for Group D?

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Q1 1.00 0.75 0.69 0.95 0.53 0.68 0.61 0.74 0.69 0.94
Q2 1.00 0.73 0.66 0.52 0.41 0.37 0.67 0.56 0.69
Q3 1.00 0.64 0.40 0.49 0.53 0.51 0.55 0.61
Q4 1.00 0.47 0.75 0.65 0.66 0.68 0.95
Q5 1.00 0.37 0.31 0.77 0.49 0.58
Q6 1.00 0.79 0.44 0.67 0.79
Q7 1.00 0.26 0.58 0.64
Q8 1.00 0.60 0.73
Q9 1.00 0.77
Q10 1.00

? Correlation of 46 junior/senior mathematics majors sections
(831 total responses).
Average constancy of response was 0.448.

Are we really to believe that the correlation to questions 1 and 2,
or 1 and 3, one designed to gain information about the instructor
in general and the other specifically about the course content,
should be so high? Even in those sections of freshmen engi-
neering calculus with common exams where the instructor had
no input into the course syllabus or either the making or grading
of the major exams the correlation between these two questions
was considerable (0.71).

While there is very clearly some signal remaining from the re-
sponses to individual questions, it is just as obvious that it is
blurred by a background that in some sense measures the stu-
dent’s attitude towards the instructor, what one might call the
“customer satisfaction index.” It is also clear that the signal to
background ratio is quite low and this shows that caution must
be used in interpreting the responses as legitimate answers to
individual questions.
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The above correlations might give credence to the practice of
replacement of the individual response averages by their mean.
On the basis of the above information this is certainly justified
from a statistical standpoint. It does beg the issue of why we
should bother to have ten or more questions when two or three
might very well carry virtually the same information. It also
motivates the further study of the student evaluation data in order
to see on what other factors it might depend.

Evaluation and Grades.

Folklore in the Department, and indeed amongst mathematics
faculty nationwide, has long held that there is a direct correlation
between student evaluations and grades, despite an extensive
claim in the Education literature to the contrary. The data we
have accumulated over the last three semesters allows us to make
some tests of these contrary hypotheses.

The figures to be presented below plot the gradepoint ratio
given out in each section against the mean evaluation score for
that section. Care must be taken in selecting the courses and
choosing the scales. We avoided courses that had strong coordi-
nation between sections, such as a common exam format since
these, at least in theory, should have no instructor-dependent
variation in grades (although the laboratory and final exam grade
were at the instructor’s discretion). On the other hand we wished
to choose courses with a large number of sections in order to get
statistically meaningful results. We cannot compare sections of
different classes on the same graph for they are very likely to
have different gradepoints and possibly different averages for the
evaluations, as table 1 shows.

We also should be aware of the issue of comparing sections
of a course on the “on semester” with those on the “off-semester”
since the grade scales are going to be different. We can allow for
this last possibility by dividing individual section gpa’s by the
mean gpa for that semester. Thus a relative gpa of 0.95 meant
that the gpa for that section was only 95% of the mean gpa for
all sections of that course in that semester. The same sort of
scaling can be done for the evaluations. The figures below show
the results for three courses that fit the above paradigm. In these
figures we have used the following notation: For a vector of
values{xi}N

1 we denote by|x − x̄|1 the quantity|x − x̄|1 =∑N
1 |xi − x̄| . Given two sets of data values{xi}N

1 , {yi}N
1 we

will make the hypothesis that they obey a linear relationship of
the formy = ax + b . The quantitiesa and b are computed by
a least squares fit to the data(xi, yi) . In this situationσ1 is the
sum of the absolute values of the distances of each point(xi, yi)
from this line.

Figures 2, 4 and 5 below show plots of the actual grade point
ratio given out against the total evaluation for that class for each
of one course selected from Groups A, B and C. Figure 3 shows
an example of a student’s expected grade plotted against total
evaluation. The influence of Q-drops has not been taken into
account in these figures. Some discussion of the influence of this
factor will be presented later.

Evaluation

gpa
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Fig 2. Math 251: actual gpa and evaluations
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|x − x̄|1 = 0.073
|y − ȳ|1 = 0.117

σ1 = 0.077
r = 0.675
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Fig 3. Math 251: expected gpa and evaluations
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|y − ȳ|1 = 0.127

σ1 = 0.127

r = 0.602
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Fig 4. Math 142: actual gpa and evaluations
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|y − ȳ|1 = 0.081

σ1 = 0.078
r = 0.270



William Rundell Numerically Scored Evaluations

Evaluation
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Fig 5. Math 308: actual gpa and evaluations
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σ1 = 0.070
r = 0.439

These correlations are too high to accept the hypothesis that
grades and evaluations are unrelated.

The figures presented here indicate a possible, albeit crude,
means of taking into account the influence of grades. Given a
certain degree of correlation has been detected, one can make
the assumption that points close to the liney = ax + b of
best fit are within the “expected range.” Points(xi, yi) that
are outliers and above this line represent those instructors who
have significantly higher evaluations than the values of the grades
given out in this course. The individuals in this category correlate
very strongly to those previously considered by the Department
to be “good” instructors. Indeed, this is where many of the
winners of teaching awards placed. In a similar manner it was
noticed that instructors whose scores placed them significantly
below the line had previous histories of poor student relations.

To further pursue the relationship between evaluation re-
sponses and grades, we looked at each group of courses and
computed the mean score for each of question 1 through 10 in
the case when the expected grade as provided by the student on
the form was each of A – F. The results are shown in Table 6
below for groups A, B and C.

Table 6. Evaluation against expected grade

Expected Average Eval % claiming
Grade Question 1 this grade

A 3.855 24.9
B 3.491 37.0

Group A C 3.063 26.9
D 2.592 6.7
F 2.415 0.5

A 4.094 24.5
B 3.730 39.5

Group B C 3.299 28.0
D 3.127 4.7
F 2.6.97 0.7

A 4.171 29.8
B 3.695 40.3

Group C C 3.217 22.4
D 2.704 2.6
F 2.375 0.4

Similar values were obtained for every sufficiently large sample
we analysed.

Using the data in this table the correlation between the aver-
age evaluations and the expected grades is 0.99 although this is a
misleadingly high figure since we have averaged out much of the
detailed information of the raw data, Another way to look at this
information is this. For the evaluations in group C, students who
expected an A were four times more likely to award the instructor
a score of 5 in question 1 than those students whose expected
grade was a C. Similarily, the C students were four times more
likely to respond with a score of 1 than the students who expected
an A.

It should be noted here that the number of D and F grades
claimed by the students as their expected outcome are consid-
erably lower than actually given out for the class as a whole.
The other grade values, while more in line with actuality, are
over-inflated. There are several possibilities that might explain
this. The first is that the students simply overestimate their actual
grade. They either respond here with an unrealistic expectation
or the final exam does consistently lower grades. Second, the
expected grades claimed are approximatelycorrect, and the miss-
ing students in the evaluation process are mostly making grades
of D and F. If we note that that on average there is only a two-
thirds response rate, then this second hypothesis is not entirely
inconsistent with the data. The likely situation is a combina-
tion of these possibilities with some variation depending on the
course. For example, courses for elementary education majors
had a higher difference of actual from expected grade point ratios
despite having one of the highest response rates of any group.

Evaluation and Future performance.

We made an attempt to use some of our longer sequences of
courses to determine whether students who took certain instruc-
tors in the beginning courses of the sequence did measurably
better than others in later courses. The aim was then to test the
correlation between “successful professors” (by this measure)
and professors who had “good” student evaluations. The group
of courses selected for the experiment were the three semesters
of calculus and differential equations. No other sequence we
teach is as long and contains as many students as this one.

One always hopes for internal consistency and some positive
correlation between the classes of “good instructors” by two
different measures is to be expected. While this sample is more
limited than we would like, we did not use any information
consisting of less than 25 students and this is the minimum sample
size for each of the dots in the graphs below. The mean sample
size was approximately 50.

There are several ways to define success in successor courses,
and in the data presented below we used two such measures. One
was simply making a grade of C or better in the more advanced
class given that a passing grade was achieved in the lower one.
The other one looked at the grade point ratio of each of the cohort
groups and defined success as the ratio of the gpa in the advanced
class divided by the gpa of the group in the lower course. In the
first case, for every student in common who made a C or above
one point was given, for those who made a D or F no points were
assigned. Thus the average score by this method was always
less than or equal to one. For the second case, the ratio could
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certainly exceed one, but as a testimony to the high standards
required of students in this sequence, this was rarely true.

The case of the first semester (M151) as a feeder for the the
second semester (M152) is shown in Figure 6 below. The points
designated by a◦ correspond to those where success is measured
by making greater than a grade of C, and the points• denote the
ratio of successive gpa’s

Fig 6. Math 151→152 success rate vs Average Evaluation
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sample size = 1887

Figure 7 shows the situation with the advanced class being third
semester calculus and the feeders being either first or second
semester calculus. The success criterion is the gpa ratios and this
is compared to the response to question 1. If we had to use the
greater than grade C criterion the corresponding correlations are
r = −0.367 for M151 andr = −0.160 for M152.

Fig 7. Math 151, 152→251 success rate
vs response to Question 1
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• from M151 (629 students) r = -0.343

◦ from M152 (1083 students) r = -0.509

The most charitable way to describe this information is that it
shows by some measures the two quantities are almost unrelated.

A more cynical voice would consider the negative correlation
factor to be significant. In either case it is disturbing to note the
number of professors who received very high student evaluations
yet performed poorly on the carry-on success rate test. Many of
the faculty who gained high scores on the carry-on success rate
were instructors with a reputation for excellence, but who are
considered “hard” by the students. Traditionists will consider this
data to be a triumph for their viewpoint. The considerable range
in values of the “success rate” parameter is certainly striking, and
at least to the author, unexpected.

There are several criticisms that can be made in the compu-
tation of this success rate. Amongst these are the fact that we
neglected Q-drops in computing the gpa ratios. An instructor
who had a large number of Q-drops in the beginning of the two
classes passed on a reduced, and presumably stronger, set of stu-
dents than the instructor who retained a higher proportion of the
intake. Also, a Q-drop in the upper level course might have some
significance.

To test for these effects we used the differential equations
class M308 as the final course and with each of the first, second
and third semester calculus as the initial class but this time made
two modifications to the grade-point ratio to reflect the Q-drops.
In the final course (M308) we assigned a grade value of 1.0 to
a grade of Q, while in the initial course we multiplied the grade
point ratio of the students passed on by the retention rate (those
completing the course divided by those officially registered). The
possible effect of Q-drops on the evaluation scores themselves
was not taken into consideration. The results are shown in Fig-
ure 8 which uses the actual grade point averages for the initial
course and in Figure 9 where the gpa has been modified by the
described process.

Fig 8. Math 151, 152, 251→308 success rate
vs Average Evaluation
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Fig 9. Math 151, 152, 251→308 modified rate
vs Average Evaluation
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The average Q-drop rates for the three feeder courses is not
the same; 3.9% for M151, 4.3% for M152 and 9.0% for M251.
As one can see, this modification for Q-drops makes some change
in the in correlation index, but the overall picture is very similar.
This is not to say that Q-drops should also play a small part in
other correlations, and in particular, not for the case of an indi-
vidual instructor. For example, when the data used to construct
figure 6 was run to include Q-drops as a non-success factor very
little difference was found for most instructors. This is consis-
tent with the low rate of Q-drop in the second course (M152).
However, a few instructors had their success rate drop by 50%,
an indication of a possible problem.

An objection to using student performance in downstream
courses as a mechanism for evaluating teaching effectiveness is
that in longer chain sequences the instructor of the first course
may be expected to have a lesser effect on the performance of
his or her students on the final class in the sequence due to
the influence of the intermediary instructors. More importantly,
this may be difficult to quantify with the available amount of
information. There is some evidence of such a difference from
the data contained in figures 8 and 9.

Another objection to this method of evaluation is the possi-
bility that only serious students willingly take courses from the
“hard” instructors and so this faculty group start out with an un-
representative sample. If this is in fact the case then it would
indeed be difficult to compensate for the skewed sample. How-
ever, even with full information students are rarely able to plan
their schedules to take every section of choice, and it is unlikely
that this effect is any greater than that attributable to the time
the class meets. However, the assumption that all sections of
a course being compared have very similar students profiles as
regards ability and motivation is critical to the analysis of this
section. One facet of this particular issue will be studied in the
next chapter. The results indicate that the assumption is in fact
open to serious question.

The limited nature of this study must be understood. Only
four semesters of information was available and only a relatively
small number (40%) of the faculty participated in the this cal-
culus sequence Yet there was considerable consistency in many
respects. Instructors who appeared in more than one graph tended
to have very similar carry-on success rates. However, it must be
noted that this rate, being a single number, cannot be expected
to capture many of the nuances of a complex process and most
of the modifications suggested as being relevant for the average
student evaluation index are applicable here also.

If this carry-on success rate is a valid measure then there
must be legitimate concern with the use of student evaluations as
a primary source of teaching effectiveness.

Do all sections have similar student profiles?

This assumption is implicit in any comparisons that might be
made between different sections of a given course. It is partic-
ularly important to be able to make such an assumption in the
study of success rate in downstream courses, or if it is invalid, to
find a means of compensating for the effect.

Attempting to test motivation levels of students is beyond
any data set that the Department possesses. However, we can
test whether the students in two different sections have obtained
a similar level of academic performance. For mid or upper level
courses we can use the current grade point ratio of the students.
This will not be useful for freshmen, but we can use an index such
assat score or high school rank. Note that this is not to indicate
a believe in the strong predictive powers of standardized tests, but
merely an acknowledgement that such measures are frequently
used as predictors, and is data that we do have available.

To test the hypothesis that all sections of a given course
tend to have similar student profiles we looked at the distribu-
tion of sat scores in the first semester of engineering calculus
(Math151) and the distribution of grade point ratios of students in
the sophomore/junior level course Math308. This was done for
all sections of these courses over a 6 year period, 1990-1996. In
each semester the total number of students in each course were
considered to be distributed intoN groups according to their
scores (sat or gpa) and the qualifying scores for each of these
groups were chosen so as to make approximately equal numbers
in each group. We used a value ofN = 10 . In the case of
Math151 the average section size was 100 students so that there
is an expectation of 10 students in each level or bin. For Math308
the expected number in each bin is 6, but this is still more than
the accepted minimum for theχ2 test that was used. Sections
with lower enrollments that did not meet a minimum expected
level of 5 students in each bin were deleted from the study.

Using theχ2 statistic the probability that the distribution
into each of theseN bins from any given section is fairly drawn
from the course sample can be computed. This will be a number
between0 and 1 with low values indicating poor correlation.
The table below shows the range of these values over all sections
for the six year period.
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Table 7. Distribution χ2 probabilities obtained from
comparing individual sections of a course with scores
from all students in that course in a given semester.

χ2 range M151? M308†

0.0 − 0.1 7.1% 4.0%
0.1 − 0.2 7.1% 4.0%
0.2 − 0.3 7.1% 3.0%
0.3 − 0.4 8.9% 4.0%
0.4 − 0.5 8.0% 8.0%
0.5 − 0.6 7.1% 11.0%
0.6 − 0.7 13.4% 12.0%
0.7 − 0.8 14.3% 13.0%
0.8 − 0.9 11.6% 21.0%
0.9 − 1.0 15.2% 22.0%

? Using SAT score as the comparison (112 sections).
† Using previous gpa as the comparison (101 sections).

This certainly does not support the hypothesis that test scores
of students differ little between sections. A similar set of differ-
ences was found for others courses analysed.

Conclusions

We entered into the process of standarised evaluations with an
open mind and were hoping, as many have in the past, for a silver
bullet that would allow us to deal with the problem of evaluating
teaching in an objective manner. If this could also be combined
with a reduction in the workload of such a task then this was an
added bonus.

There is much information that can be gained from the
numerically-based responses and there is clearly a signal hid-
den in a background of more single-valued information. How

to filter this background is much less clear. How to modify the
responses in light of other information about the course is even
less clear. A mathematical model can be constructed that tries
to make allowance for these factors and the available data used
to get a best fit to needed parameter values provided the sample
size is sufficiently large. The complexity of this will be orders
of magnitude greater than anything that is currently being at-
tempted locally and there will still be significant subjectivity in
the interpretation of the results.

However the analysis we have performed on the data suggests
that the distillation of evaluations to a single number without tak-
ing into account the many other factors can be seriously mislead-
ing. The correlation between positive student evaluations and
grades awarded is sufficiently strong to indicate that a procedure
based on numerical scores such as we have described is surely
going to lead to grade inflation in the long term.

While the idea of tracking student’s progress through a se-
quence of courses is an attractive means of evaluating faculty
performance, only a relatively small number of our enrollments
in a given semester is in a chain of courses sufficiently structured
for data to be collected. For various reasons some faculty do
not teach these classes at all. The negative correlation that our
study seems to indicate between the two measures of “carry-on
success” and, what we have discovered in this article is best de-
scribed as “short term customer satisfaction,” is very disturbing.
If this is indeed the situation, then the use of student evaluations
as a primary measure of teaching effectiveness, simply because
it is easily normable, is a very questionable practice.


