ISSN 1223-9631

BULLETIN

OF THE

TRANSILVANIA UNIVERSITY
OF
BRASOV

Vol. 1 (36) - New Series
Series A

e MECHANICS

e ELECTROTECHNICS AND ELECTRONICS
° MATERIALS PROCESSING

e WOOD INDUSTRY |

e SILVICULTURE

OFF - PRINT

* Published by
TRANSILVANIA UNIVERSITY PRESS

Brasov, Romania
1994



NUMERICAL SYNTHESIS OF THE STEPHENSON
I FUNCTION GENERATING MECHANISMS

P. A. Simionescu

Abstract: The paper presents a synthesis method of the STEPHENSON II
Junction generating mechanism. The novelty is that, by considering a variable
length of one of its elements, the structure of the mechanism is modified, so
that the input and output members can be driven exactly in accordance with -
the imposed function. The synthesis problem becomes one of optimization, i.e.

of choosing the parameters of the mechanism, on which the root mean square
(RMS.), or the TCHEBYSHEFF norm of this variable length is minimum.

Key words: function generator, variable length, optimization algorithm.

1. Introduction

The study of the six-bar STEPHENSON
mechanism  attracted a number of
nvestigators, being, as known, a problem
of high complexity.

By a proper choice of dimensions, a
mechanism can be synthesized so that a
given input motion (in this case, rotation)
can produce a specified output motion. In
comparison with the classical four-bar
function generating mechanism, the six-bar
STEPHENSON mechanism can produce a
function closer to the imposed one, due to
the increased number of parameters that
define its geometry. However, the linkage
can not be made to produce exactly the
.desired function, and the designer should
aim at minimizing the departure from the
required function, which is called the
structure error of the mechanism.
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2. The STEPHENSON 1II
generating mechanism

function

The synthesis of a STEPHENSON I
function generator, for a minimum
structure error, is usually carried out either
by the precision point approach [2] or by
applying optimization techniques to the
synthesis equation of the mechanism. For
the six-bar STEPHENSON II mechanisn.
the synthesis equation can be obtained
from the closed loop equation (and solved
using numerical techniques), or can be
applied a suitable kinematic inversion of
the mechanism [1]. Both methods are
difficult to use due to the increased number
of calculations involved. Furthermore, in
case of an iferative optimization algorithm,
it is important that the CPU time required
for each valuation of the objective function
be as short as possible.
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As in papers [3] and [7] on a four-bar
mechanism, we impose the six-bar
STEPHENSON II mechanism to generate
the function:

y=-g(x+2),

in the range 0<i<6. The four-bar
mechanisms proposed in these papers,
generate the above function (1) on a
maximum  structure ‘error of 1.88°. and
1.477° respectively. :

An important requirement is to design a
mechanism having uniform scales for both
x and y. Thus the relationship between x
and y and the rotation angle ¢, and Pout OF

“the respective input and output members.
. are: ,
X—X

.= 2 A .+ O.
(Pm A Xf _Xs . Oin Qins !
y-y @
(Pout = - A(poﬁt + q)outs )
- YS

where the input limits are x,and x; and the
corresponding output limits are Vs=y(Xs)
and y=y(xg), while @y, and @y are the
initial angles of the input and output
members.

3. The synthesis method applied to the
STEPHENSON IT mechanism

For the six-bar STEPHENSON II

mechanism, the synthesis method proposed
in this paper considers the modified
mechanism with two degrees of freedom
(fig. 1 and 2). An advantageous way to
increase the degree of freedom of the
mechanism  (because of the simpler
analytical calculations mvolved) is to
consider a variable angle (CAE for the
mechanism in fig. 1, or CBE in case of fig.
2) of the triple jointed, non adjacent to the
frame element. In this case, the mput and

O

output members can be driven (with some
limitations) exactly in accordance with the
imposed transmission law, as that given by
relation (1).

The problem becomes now one of
optimization, ie. to determine the
parameters that define the mechanism in
which, by a separate driving of the input
and output members (in accordance with
the imposed function) the variance of. the
distance - between joints C and E is
minimum. In such a case, the structure
error of the single degree of freedom -
mechanism, with a stiffened CE rod, will
also be of a small value.
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For an intermediate position Pinj> Pougj OF
the two extreme elements, driven in
accerdance with the imposed function, the
distance between the released joints is
calculated with the known formula
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2 2
CE; = \/ (ch - XEj) * (ch - YEj) -0
The coordinates (Xcj, Y¢;j) and (Xg;j, Yg;) of

joints C and E of the mechanism in fig. 1,
can be obtained by solving the following
system of equations: ’

(XCJ - XAJ‘)2 + (YCj —YAj)2 = ACZ '
(X - X5, ) + (Y- Yy ) =BC?,
(XEJ; - XAj)2 + (YEj =Y, )2 =BE?

2 WV

(X, - Xy, ) +(¥, - Yy,) = DE%.
We considered point C as an intersection of
the circle of radius AC and center A with
the circle of radius BC and center B, and in
the same way, point E as an intersection of
the circle of radius AE and center A with
the circle of radius DE and center D.

For the mechanism in fig. 2, the
coordinates of joints C and E can be valued
by solving the similar system of equations

&) |
(XCJ’ - XAJ)Z +(ch _YAj)2 =AC?,

(XCJ B XBj)2 + (YCj - YBj)2 =BC?,
(XEj - XBj)2 + (YEj -YBj)2 =BE?|

2 2

(x5 - Xy, ) + (¥ - ¥y ) = DEZ.

Because it has been proven that the
more angles we use to define the geometry
of the mechanism, the better it is’ (think of
the fact that any two angles and a length
determine a triangle, while three lengths
are not always determining one), we
considereéd the mechanism in fig. 1 defined
by the following parameters: O0;, OA,
Pins, 2, Cp7, O3, Uy, 0B> OD: s and Pouts>
and the same for the mechanism in fig. 2:

4)

)

" The range of the function will be wider.

o

00;, 01A, O1D, 04, Pins, 02, O3, O30, Oy,
OB, and @yt

The lengths AC, BC, AE or BE and DE
in the given system of equations (4) and
(5), can be calculated (in the reference
position @j,, Pouts) from the triangles ABC
and ADE (fig. 1), or ABC and BDE in casc
of the mechanism in fig. 2.

We have considered a positive
orientation of angles oy...a5 as shown, and
the double sign in a solution of equations

(4) and (5) of the form:
_ P £Q; '
Yo = R, - )
P, i@ (6)
Yg = R, !

is chosen in accordance with the positive or
negative sign of angles o, and a4,

respectively.
The coordinates of joints A, B and D in
an intermediate | position, can be

calculated for the mechanism in fig. 1 as
follows:
X, =00, +0,Acoso,; .

. 7)
YAj = OIOSIn(pinj ] : ( )
aS
Xp; = OBcog 0, +7 )
8)
R a )
YBj = 0OBsi1 Qo T > )
and
CX’S
XDj =0Dco P o —7 ‘
)

. oL
.YDJ. =0Dsi Pous —-? ,

The same goes for the mechanism in fig. 2

o
X, =00, + OlAcos(q)inj - _il—j )
7
. o,
YAj = OlAsm((Pinj - ‘2—) !



=00 +ODcos( i T ),

o (3
Yp; = 00, +ODsin| o, +71j )
and
Xy =OBcoso,,,
Y = OBsing,_, @)
Bj B o -

For j=1.n positions that correspond to
angles @;y; and @,y in the ranges

(pi_ns < (pln_] < (\Djns +A(P1n !

(pouts = (Poutj = (Pouts + Aq)out 1

we have defined an objective function F1

of value the RMS. of the variable distance
between joints E and C, i.c.

FI(.) = Jli(CEj ~CE,) - (10)

The design parameters are the lengths and
angles that define the geometry of the
+ mechanism. We have nominated with CEo

the average of the n lengths CEj calculated
for each j intermediate position

CE, ~—ZCE !

“which is the length of the rod CE in case of
the single degree of freedom mechanism,
we also search for.

In order to make some comparisons,
another objectlve function F2, of the same
arguments but of value: the Tchebysheff
norm | .. | of the same variable length CE,
have been considered i.¢.

F2(..) = [5CE,| = max|CE - CE,| . (12)
In a computer algorithm it is easier to
calculate the value of this objective
function as the maximum of j=1..n discrete
values 6CE= | CE; -CEy|. The reference
length CE, is the same average givén by
relation (11).

an

4. Results and conclusions

In case of function (1), some numerical
applications have been made for the

- mechanism in fig. 1, in case of the unit

length frame O0,. We have also imposed
the initial angles @i, and @y, of fixed
values 80° and -20° respectively, and both
input and output members to rotate 90° for
the chosen range of x, namely Acpin=90°
and A@y,=90°.

The study of these F1 and F2 objective
functions proved that there are several local
minimums, separated mainly by the
geometry of the ABCD loop. This loop can
be concave one, with angles o, and ay of
the same sign, or convex, in case ofa, and
o of different signs.

T 9-107*
L 0.75°

-OCE

M,V
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: -9-107*
BO° Sﬂm 170°
Fig. 3
An important remark is that the

minimum of the F2 objective function,
usually ensures a less maximum structure
error then the F1 objective function. This
can be seen from the following two
solutions, obtained as minimums of the F1
and F2 objective functions respectively,
selected from the same 50,000 sets of
randomly generated parameters. The
number of  intermediate  positions,
equidistant in the input member range, was
considered n=90.




~ T CEy=0.2139,

- and . 947.10°

. AE=05259,

. The first mechanism obtained as the
‘minimum of F1, is of parameters: 00;=1,
'0;A=0.4652, AC=0.7051, AE=0.5221,
B(C=0.3335,
0B=0.3021, as=-4.052°, OD=0.3586 (and
' .posmve angles o, and a,’), and ensures a
Qmammum structure error of 0.9273°- (for
' the input member in its final position). The
~ corresponding  RMS. and Tchebysheff
" norm of the Vanable length CE ate 421 10°
respectlvely A whole.range
graphlcal representatlon of the 5CE (curve
" 1) and of the structure error 8(pout (curve 2)v
1s given in fig. 3.
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' Fig: 4

. The second mechamsm of parameters
00=1,.; - 01A 0.4774, ... AC=0.7029,
CE0~O 21 16 BC=0. 3397

'DE=0.5138, . OB=0.3134,

while the value of the functron (the
- Tchebysheff norm) was 894 10°
CA slmllar graphical representatron of the
SCE and of the structure error 6(pout are
- given in fig. 4. In“fig. 5 is also given a
drawing of this former mechanism, in its
initial and final positions.
. In both these examples, a resemblance
of the shape of SCE(g;,) and of 8@yui(Pin)

DE=0.5106, _

. ” 8(Pout "

graphical representatrons in ﬁg

&5“*4.052?, .
0D=0.3628 (the' same positive angles o, -
and ay’), ensufes a less output error of .
. 0.7175° (for the input member in its ﬁna‘l
position too) The value of the RMS. Was“
of 537 10°° mn this case, greaterthan before,

*can be observed. The fact that both SCE " 0

and 8¢,y become zero for the same ¢y, is

obvious, but it can be observed that by a- - = 1

proper scaling of one of this curves, it can

not be exactly superposed over the other. :
This - proves that the mechani¥m that-;d
- ensures the absolute mrmmum in |« 3CE I

will not ensure ‘the absolute mmrmum m' 5

The angular structure error ESq)m for the |

has - been numencalh determmed b\li

searching the value of the angle (PouLRE R in . )
-the neighborhood of the correspondmg T

theoretical -angle @ou, (glven. by. relation

- (2)), on which the deviation CE CE(; Lqualaf'i )

zero [4], [6]. A
Both solutions obtained after the ﬁ() UOO‘, o

lteratrons Monte Carlo search ensure mom.]

accurate approximation - of function (1).

~ than the four-bar mechamsm propoqed m
© .. papers [3]and [3]. - -

tn

Fig.

Better solutrons of STEPHENSON H

4ﬁmctrons generators can be- obtamed in
case of the same function, both in output - .
precision and in transmission angles, by, -

for instance, varying the ¢, and @gu
initial angles,
advanced optimization subroutines.

and 40000

and also by using more .-
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Sinteza numerica a mecanismelor STEPHENSON I
generatoare de functii j :

Rezumat: Lucrarea prezintd o noud metodd de sinteza a mecanismelor
generatoare de functii, cu triada si tetrada, derivate din lantul cinematic .
- STEPHENSON.. Noutatea metodei consta in .aceea ca mecanismul este
modificat prin considerarea unuia dintre elemente de lungime variabila. In
acest fel elementele de intrare si de iesire pot fi antrenate in concordanta cu
legea impusa, problema sintezei mecanismului revenind la a determina acei
paramelri geometrici pentru care abaterea medie palratica sau norma
Cebasev, a lungimii elementului considerat variabil este minima.

Cuvinte cheie: mecanism generator de

de optimizaretin.

- Recenzent: prof.dr.ing. Petre Alexandru,

Junctii, lungime variabila, algoritm.



