Texas A&M University–Corpus Christi College of Science and Technology Engineering Technology

Course Number and Title: ENTC 4448 Control Systems II

Weekly Schedule: 3 hours lecture and 3 hours laboratory

Prerequisites: ENTC 4446 Control Systems I

Course Description:

Continuation of Control Systems I: Control systems design; controller mode selection; control loop tuning; data acquisition systems; distributed control systems; supervisory control; data transmission; networks; analysis and specification of complete control systems.

Textbooks

- 1. Introduction to Control System Technology, 7th Edition, Robert Bateson, Prentice Hall, 2002.
- 2. <u>Principles and Practice of Automatic Process Control</u>, 2nd Edition, Smith and Corripio, Wiley, 1997.
- 3. LabView 6i Student Edition, Robert Bishop, Prentice Hall, 2001, ISBN: 0-13-032550
- 4. <u>Process Control Workshop Reference Manual</u>, 37-001-2M5, Feedback—available in the lab.
- 5. MATLAB Student Version Release 12 and Control Toolbox, The MathWorks optional.

Course Objectives

This course is designed to enable students to:

- Specify and design multi-loop control systems.
- Apply control loop tuning methods.
- > Apply control concepts to the operation of automatic control systems.
- Describe the use and operation of distributed control systems (DCS) and supervisory control for the control of manufacturing and processing systems.
- > Design and develop data acquisition systems for process and industrial applications.
- > Apply the concepts of fuzzy logic to control applications.
- Characterize the media used to communicate control loop signals and describe the use of fieldbus for process control.
- Use LabVIEW for measurements, virtual instrumentation, and instrument control programming.

Assessment

	Points	If	Grade
Homework	05	90 <u><</u> Total < XX	А
Lab exercises/reports/posttests	05	80 <u>< T</u> otal < 90	В
Quiz	04	70 <u>< </u> Total < 80	С
Midterm 1	15	60 <u>< t</u> otal < 70	D
Midterm 2	15	xx < Total < 60	F
Paper draft	02		
Project research paper	05		
Project progress report	02		
First project presentation	02		
Project report/presentation/demo	20		
Final	25		
Total	100		

Topics Covered

Cascaded systems, LabVIEW basics, Ratio control, Feedforward control, Virtual instruments, Multi-variable process control, Override and selective control, Editing and debugging virtual instruments, Self-tuning adaptive controllers, Tuning of feedback controllers, Controller design, Design of multi-loop control systems, Structures, Fuzzy logic controllers, Supervisory control, Arrays and clusters, Networks, Fieldbus for process control, Distributed control systems, Charts and graphs, Data acquisition systems, Pneumatic control, Analytical devices: analyzers.

Laboratory Exercises/Experiments:

LabVIEW Programming	Exercises/experiments	Training CDs	
LabVIEW basics	Pulse flow transmitter	Single loop control	
Virtual instruments (VIs)	On/Off Control	Tuning loops	
Editing and debugging VIs	Proportional Control: Level	Pneumatic control	
SubVIs	Proportional Control: Flow	Introduction to DCS	
Programming with Structures	PI and PID: Level Control	Networks	
Arrays and clusters	PI and PID: Flow Control	Field devices: analytical	
Charts and graphs	Tuning PID Controllers		
Data acquisition and control	Process Controller Programming		

Prepared by: Ray Bachnak

Date: ______