Using Excel's Solver Package

We'll take as our example the cat problem:

 x_1 = number of Siamese x_2 = number of Persians Objective Function: Maximize income $12x_1 + 10x_2$ Constraints: $2x_1 + x_2 \le 90$ Tuna $x_1 + 2x_2 \le 80$ Liver $x_1 + x_2 \le 50$ Chicken

 $x_1, x_2 \ge 0$

How to enter the problem into Excel

	А	В	С	D	E	F
20		Variables		These calls (B21 and B22) are where the		
21		Siamese	Persians		ables will be k	ent We
22		0	0	start at the origin	(0, 0) as usual	
23	/				(0, 0) 43 434	
24	Constraints /		((\frown
25	tuna	2	1	=B24*B\$21+C24*C\$2	<pre> < = </pre>	/ 90
26	liver	1	2 X	=B25*B\$21+C25*C\$21	< =	80
27	chicken	1	1	= B26 * B \$21 + C26 * C \$21	< =	50
28	Objective Function				$\parallel \setminus /$	
29	income	12	10	= B28 * B\$21 + C28 * C\$21	$/ \vee$	\bigtriangledown
30			V	/		
31		\backslash		<u> </u>	V	V
32					(Optional)	The
33	•				Reminders	constant
34	We use variables			▼	of what	bound for
35	like "x1" and "s2"	Coefficient	s just get	These are the only	kind of	each
36	because it's easier	entered un	derneath	formulas you have to	constraint	constraint.
37	to do algebra with	the corresp	onding	enter. All you have to	each is.	
38	them than with	variables as they		do is to mimic the		
39	whole words like	appear in original		algebra in the original		
40	"liver" But the	formulation of the		formulation. For		
41	computer doesn't	problem.		example,		
42	care, so you can					
43	just use words			2 x1 + 1 x2		
44	instead of variable			is the same as		
45	names if you want.			B24*B\$21+C24*C\$21		
46	Doing so makes the					
47	results easier to					
48	interpret					
49						

How to Use Excel's Solver

	G	Н	I	J	К	L
4	Variables					
5		Siamese	Persians			
6		0	0			
7						
8	Constraints					
9	tuna	2	1	0	< =	90
10	liver	1	2	0	< =	80
11	chicken	1	1	0	< =	50
12	Objective Function					
13	income	12	10	0		

The cell names below refer to the following in excel

- Choose "*Solver*" from the "*Tools*" menu
- Fill in these five elements:
 - 1. "Set Target Cell" should be the cell with your objective function formula (J13)
 - 2. "Equal to" should be set to min or max, as needed
 - 3. "By Changing Cells" should be the cells with your variable values (above, H6:I6)
 - 4. "Subject to Constraints" is filled in as follows:
 - Click the "*Add*" button
 - Fill in the first box with the formula for the left hand side of your constraint (J9)
 - Make sure the inequality in the middle is the one you need
 - Fill in the second box with the constant on the right hand side of your constraint (L9)
 - Click "*OK*"
 - Repeat with the other constraints

NOTE: If the inequalities are the same for each constraint, you can save time by doing all together. For example, above, you can enter J9:J11 <= L9:L11 for the three constraints When you're finished with this problem it should look something like this

olver Parameters	?
5et Target Cell: \$3\$13 🔣	<u>S</u> olve
Equal To:	Close
\$H\$6:\$I\$6 Guess	
Subject to the Constraints:	Options
\$J\$11 <= \$L\$11 \$J\$9:\$J\$10 <= \$1\$9:\$1\$10 <u>Add</u>	
Delete	<u>R</u> eset All
	<u>H</u> elp

- Finally, hit the "*Options*" button
 - Click "Assume Linear Model" on
 - Click "Assume non-negative" on. (This takes care of the $x_1, x_2 \ge 0$)
 - Click "OK" to leave "Options"

	1	
1ax <u>Ti</u> me:	100 seconds	ОК
terations:	100	Cancel
Precision:	0.000001	Load Model
Tol <u>e</u> rance:	5 %	<u>S</u> ave Model
Con <u>v</u> ergence:	0.0001	Help
🔽 Assume Line	ar Model 🛛 🗌 Us	e Automatic Scaling
🗸 Assume Non	-Negative 🗌 She	ow Iteration <u>R</u> esults
Estimates	Derivatives	Search
Tangent	Eorward	• Newton
C Ouadratic	C Central	C Conjugate

- Click on "*Solve*" to get things going
- When Excel gets done solving things, you get a box that looks like...

Solver Results	? ×
Solver found a solution. All constraints a conditions are satisfied.	and optimality <u>R</u> eports
<u>Keep Solver Solution</u> Restore <u>O</u> riginal Values	Answer Sensitivity Limits
OK Cancel	Save Scenario <u>H</u> elp

Before you click on "*OK*," click on the word "*Sensitivity*" to the right. When you do that, you get a new tab added to the spreadsheet that helps you interpret the results of the solution. New tabs will also be added for "*Answer*" and "*Limits*" if you would like that information as well.

- Select "Keep Solver Solution" if it isn't already checked, and select "OK."
- Excel replaces the values for x_1 and x_2 , and the rest of the data is calculated automatically.

	G	Н	I	J	К	L
4		Variables				
5		Siamese	Persians			
6		40	10			
7						
8	Constraints					
9	tuna	2	1	90	< =	90
10	liver	1	2	60	< =	80
11	chicken	1	1	50	< =	50
12	Objective Function					
13	income	12	10	580		
14						

Therefore the maximum (580) is given with Siamese = 40 and Persians = 10.