Using Excel's Solver Package

We'll take as our example the cat problem:
$x_{1}=$ number of Siamese
$x_{2}=$ number of Persians
Objective Function: Maximize income $12 x_{1}+10 x_{2}$
Constraints:
$2 x_{1}+x_{2} \leq 90$ Tuna
$x_{1}+2 x_{2} \leq 80$ Liver
$x_{1}+x_{2} \leq 50 \quad$ Chicken
$x_{1}, x_{2} \geq 0$
How to enter the problem into Excel

	A	B	C	D	E	F
20		Variables		These cells (B21 and B22) are where the values of our variables will be kept. We start at the origin $(0,0)$ as usual.		
21		Siame	Persians			
22		0	0			
23						
24	Constraints					
25	tuna	2	1	= $224 * \mathrm{~B} \$ 21+\mathrm{C} 24 * \mathrm{C} \$ 27$	$<=$	90
26	liver			$=\mathrm{B} 25 * \mathrm{~B} \$ 21+\mathrm{C} 25 * \mathrm{C}$ 21	<=	80
27	chicken	1	1	=B26*B\$21+C26*C\$21	<=	50
28	Objective Functio				(
29	income	12	10	= $\mathrm{B} 28 * \mathrm{~B} \$ 21+\mathrm{C} 28 * \mathrm{C}$ 2 21	,	,
30	\bigcirc					
31	\triangle				\checkmark	,
32				,	(Optional)	The
33					Reminders	constant
34	We use variables like "x1" and "s2" because it's easier to do algebra with them than with whole words like "liver" But the computer doesn't care, so you can just use words instead of variable names if you want. Doing so makes the results easier to interpret			\checkmark	of what	bound for
35		Coefficients just get entered underneath the corresponding variables as they appear in original formulation of the problem.				each constraint.
36						
37						
38				do is to mimic the		
39				algebra in the original		
40				formulation. For		
41				example,		
42						
43				$2 \times 1+1 \times 2$		
44				is the same as		
45				B24*B\$21+C24*C\$21		
46						
47						
48						
49						

How to Use Excel's Solver

The cell names below refer to the following in excel

	G	H	I	J	K	L
4		Variables				
5		Siamese	Persians			
6		0	0			
7						
8	Constraints					
9	tuna	2	1	0	$<=$	90
10	liver	1	2	0	$<=$	50
11	chicken	1	1	0		
12	Objective Function					
13	income	12	10			

- Choose "Solver" from the "Tools" menu
- Fill in these five elements:

1. "Set Target Cell" should be the cell with your objective function formula (J13)
2. "Equal to" should be set to min or max, as needed
3. "By Changing Cells" should be the cells with your variable values (above, H6:I6)
4. "Subject to Constraints" is filled in as follows:

- Click the "Add" button
- Fill in the first box with the formula for the left hand side of your constraint (J9)
- Make sure the inequality in the middle is the one you need
- Fill in the second box with the constant on the right hand side of your constraint (L9)
- Click "OK"
- Repeat with the other constraints

NOTE: If the inequalities are the same for each constraint, you can save time by doing all together. For example, above, you can enter J9:J11 <= L9:L11 for the three constraints
When you're finished with this problem it should look something like this

- Finally, hit the "Options" button
- Click "Assume Linear Model" on
- Click "Assume non-negative" on. (This takes care of the $x_{1}, x_{2} \geq 0$)
- Click "OK" to leave "Options"

- Click on "Solve" to get things going
- When Excel gets done solving things, you get a box that looks like...

Before you click on "OK," click on the word "Sensitivity" to the right. When you do that, you get a new tab added to the spreadsheet that helps you interpret the results of the solution. New tabs will also be added for "Answer" and "Limits" if you would like that information as well.

- Select "Keep Solver Solution" if it isn't already checked, and select "OK."
- Excel replaces the values for x_{1} and x_{2}, and the rest of the data is calculated automatically.

	G	H	I	J	K	L
4		Variables				
5		Siamese	Persians			
6		40	10			
7						
8	Constraints				$<=$	90
9	tuna	2	1			
10	liver	1	2	60	$<=$	80
11	chicken	1	1	50	50	50
12	Objective Function					
13	income	12	10	580		
14						

Therefore the maximum (580) is given with Siamese $=40$ and Persians $=10$.

